Last updated
Last updated
一般的数据库进行horizontal shard的方法是指,把 id 对 数据库服务器总数 n 取模,然后来得到他在哪台机器上。这种方法的缺点是,当数据继续增加,我们需要增加数据库服务器,将 n 变为 n+1 时,几乎所有的数据都要移动,这就造成了不 consistent。为了减少这种 naive 的 hash方法(%n) 带来的缺陷,出现了一种新的hash算法:一致性哈希的算法——Consistent Hashing。这种算法有很多种实现方式,这里我们来实现一种简单的 Consistent Hashing。
将 id 对 360 取模,假如一开始有3台机器,那么让3台机器分别负责0~119, 120~239, 240~359 的三个部分。那么模出来是多少,查一下在哪个区间,就去哪台机器。
当机器从 n 台变为 n+1 台了以后,我们从n个区间中,找到最大的一个区间,然后一分为二,把一半给第n+1台机器。
比如从3台变4台的时候,我们找到了第3个区间0~119是当前最大的一个区间,那么我们把0~119分为0~59和60~119两个部分。0~59仍然给第1台机器,60~119给第4台机器。
然后接着从4台变5台,我们找到最大的区间是第3个区间120~239,一分为二之后,变为 120~179, 180~239。
假设一开始所有的数据都在一台机器上,请问加到第 n 台机器的时候,区间的分布情况和对应的机器编号分别是多少?
Example
If the maximal interval is [x, y], and it belongs to machine id z, when you add a new machine with id n, you should divide [x, y, z] into two intervals:
[x, (x + y) / 2, z]
and[(x + y) / 2 + 1, y, n]
你可以假设 n <= 360. 同时我们约定,当最大区间出现多个时,我们拆分编号较小的那台机器。 比如0~119, 120~239区间的大小都是120,但是前一台机器的编号是1,后一台机器的编号是2, 所以我们拆分0~119这个区间。
在 Consistent Hashing I 中我们介绍了一个比较简单的一致性哈希算法,这个简单的版本有两个缺陷:
增加一台机器之后,数据全部从其中一台机器过来,这一台机器的读负载过大,对正常的服务会造成影响。
当增加到3台机器的时候,每台服务器的负载量不均衡,为1:1:2。
为了解决这个问题,引入了 micro-shards 的概念,一个更好的算法是这样:
将 360° 的区间分得更细。从 0~359 变为一个 0 ~ n-1 的区间,将这个区间首尾相接,连成一个圆。
当加入一台新的机器的时候,随机选择在圆周中撒 k 个点,代表这台机器的 k 个 micro-shards。
每个数据在圆周上也对应一个点,这个点通过一个 hash function 来计算。
一个数据该属于那台机器负责管理,是按照该数据对应的圆周上的点在圆上顺时针碰到的第一个 micro-shard 点所属的机器来决定。
n 和 k在真实的 NoSQL 数据库中一般是 2^64 和 1000。
请实现这种引入了 micro-shard 的 consistent hashing 的方法。主要实现如下的三个函数:
create(int n, int k)
addMachine(int machine_id) // add a new machine, return a list of shard ids.
getMachineIdByHashCode(int hashcode) // return machine id
Using HashMap (machine_id as key, random numbers as value)
Using TreeMap (random numbers as key, machine_id as value in the treemap)
- Toptal BY JUAN PABLO CARZOLIO
CSDN Blog - cywosp
by A Coder's Journey - Deb Haldar
- O'reily Safari Online
by Mathias Meyer