Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e.,[0,1,2,4,5,6,7]
might become[4,5,6,7,0,1,2]
).
You are given a target value to search. If found in the array return its index, otherwise return-1
.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Analysis
Binary search variation.
因为有pivot,rotate过的sorted array无法直接用标准binary search,在判断和修改搜索区间时需要做一些改变。
先根据nums[mid] 与 nums[right] 的大小关系,先判断中点mid相对pivot的位置
然后根据target和nums[left], nums[right]的关系,有一段区间满足单调性,以此继续做binary search.
Solution
Binary Search - compare mid point determine search direction - O(logn) time - (10ms, 30.57%)
class Solution {
public int search(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
}
if (nums[mid] > nums[right]) {
if (target < nums[mid] && target >= nums[left]) {
right = mid - 1;
} else {
left = mid + 1;
}
} else {
if (target > nums[mid] && target <= nums[right]) {
left = mid + 1;
} else {
right = mid - 1;
}
}
}
return -1;
}
}
Binary Search - Find the pivot position first
class Solution {
public int search(int[] nums, int target) {
if(nums.length == 0){
return -1;
}
//find the pivot
int pivot = findPivot(nums, 0, nums.length - 1);
int end = nums.length - 1;
int pivotIndex = 0;
for(int i = 0; i < nums.length; i++){
if(nums[i] == pivot){
pivotIndex = i;
}
}
if(target == pivot){
return pivotIndex;
}
else if(target >= pivot && target <= nums[end]){
return binarySearch(nums, pivotIndex, end, target);
}
else {
return binarySearch(nums, 0, pivotIndex, target);
}
}
public int findPivot(int[] nums, int start, int end){
if(start == end){
return nums[start];
}
int mid = (start + end) / 2;
if(nums[mid] > nums[mid + 1]){
return nums[mid + 1];
}
else if(nums[start] < nums[mid]){
return findPivot(nums, mid + 1, end);
}
else{
return findPivot(nums, start, mid);
}
}
public int binarySearch(int[] nums, int start, int end, int target){
if(start == end){
if(nums[start] == target){
return start;
}
else{
return -1;
}
}
int mid = (start + end) / 2;
if(nums[mid] == target){
return mid;
}
else if(nums[mid] < target){
return binarySearch(nums, mid + 1, end, target);
}
else{
return binarySearch(nums, start, mid, target);
}
}
}