LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Analysis
  • Dynamic Programming - 1
  • Dynamic Programming - 2 (Preferred, more succinct, clear, no need of hashset)
  • Dynamic Programming - 3
  • Solution
  • *Dynamic Programming - 3 - Reference - O(n) space, O(n) time
  • Dynamic Programming - 3 - space optimized - O(1) space, O(n) time

Was this helpful?

  1. Dynamic Programming

Decode Ways

A message containing letters fromA-Zis being encoded to numbers using the following mapping:

'A' -> 1
'B' -> 2
...
'Z' -> 26

Given a non-empty string containing only digits, determine the total number of ways to decode it.

Example 1:

Input: "12"
Output: 2
Explanation: It could be decoded as "AB" (1 2) or "L" (12).

Example 2:

Input: "226"
Output: 3
Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).

Analysis

Dynamic Programming - 1

dp[i]代表string s从0到i能够decode的数目, number of ways to decode string from 0 to i (included)

状态转移方程 dp[i] = if (s.substring(i, i + 1) is valid decode) then dp[i - 1] else 0 + if (s.substring(i - 1, i + 1) is valid decode) then dp[i - 2] else 0

Dynamic Programming - 2 (Preferred, more succinct, clear, no need of hashset)

Use a dp array of size n + 1 to save subproblem solutions.

dp[0] - means an empty string will have one way to decode,

dp[1]- means the way to decode a string of size 1. I then check one digit and two digit combination and save the results along the way. In the end,

dp[n] - will be the end result.

Dynamic Programming - 3

dp[i] - 从0到i个字符对应的decode ways。因此dp[]的size是n,而不是n+1。

和第二种方法类似,但是用charAt(i)来得到对应位置字符,运行效率更高:

char ch = s.charAt(i);
int num = ch - '0';

int oneVal = 0;
if (num >= 1 && num <= 9) {
    oneVal = (i - 1 >= 0 ? dp[i - 1] : 1);
}

int twoVal = 0;
if (i > 0) {
    num += (s.charAt(i - 1) - '0') * 10;
    if (num >= 10 && num <= 26) {
        twoVal = (i - 2 >= 0 ? dp[i - 2] : 1);
    }
}

dp[i] = oneVal + twoVal;

并且可以用滚动数组优化空间复杂度为O(1)。

时间复杂度 O(n)。

Solution

Dynamic Programming - 1 - O(n) space O(n) time

class Solution {
    public int numDecodings(String s) {
        if (s == null) return 0;
        Set<String> letters = new HashSet<String>();
        for (int i = 1; i <= 26; i++) {
            letters.add(Integer.toString(i));
        }
        int[] nums = new int[s.length()];
        nums[0] = letters.contains(s.substring(0, 1)) ? 1 : 0;
        if (s.length() == 1) return nums[0];
        nums[1] = (letters.contains(s.substring(1, 2)) ? nums[0] : 0) + 
                (letters.contains(s.substring(0, 2)) ? 1 : 0);
        for (int i = 2; i < s.length(); i++) {
            nums[i] = (letters.contains(s.substring(i, i + 1)) ? nums[i - 1] : 0) + 
                (letters.contains(s.substring(i - 1, i + 1)) ? nums[i - 2] : 0);
        }
        return nums[s.length() - 1];
    }
}

Dynamic Programming - 2 - O(n) space, O(n) time

public class Solution {
    public int numDecodings(String s) {
        if(s == null || s.length() == 0) {
            return 0;
        }
        int n = s.length();
        int[] dp = new int[n+1];
        dp[0] = 1;
        dp[1] = s.charAt(0) != '0' ? 1 : 0;
        for(int i = 2; i <= n; i++) {
            int first = Integer.valueOf(s.substring(i-1, i));
            int second = Integer.valueOf(s.substring(i-2, i));
            if(first >= 1 && first <= 9) {
               dp[i] += dp[i-1];  
            }
            if(second >= 10 && second <= 26) {
                dp[i] += dp[i-2];
            }
        }
        return dp[n];
    }
}

*Dynamic Programming - 3 - Reference - O(n) space, O(n) time

0 ms, faster than 100.00%

/*
  v
226

num: 26
oneVal: 2
twoVal: 1
dp: 1 2 3

dp[i]=
dp[i-1]  1~9
+
dp[i-2]  10~26

dp[0]=1 1~9  1
dp[1]=dp[0]+(01~26) 2
dp[2]=dp[0]+dp[1] 3
*/

class Solution {  // O(N) | O(N)
    public int numDecodings(String s) {
        int n = s.length();
        if (n == 0) {
            return 0;
        }

        int[] dp = new int[n];

        for (int i = 0; i < n; ++i) {
            char ch = s.charAt(i);
            int num = ch - '0';

            int oneVal = 0;
            if (num >= 1 && num <= 9) {
                oneVal = (i - 1 >= 0 ? dp[i - 1] : 1);
            }

            int twoVal = 0;
            if (i > 0) {
                num += (s.charAt(i - 1) - '0') * 10;
                if (num >= 10 && num <= 26) {
                    twoVal = (i - 2 >= 0 ? dp[i - 2] : 1);
                }
            }

            dp[i] = oneVal + twoVal;
        }

        return dp[n - 1];
    }
}

Dynamic Programming - 3 - space optimized - O(1) space, O(n) time

/*
  v
226

num: 26
oneVal: 2
twoVal: 1
dp: 1 2 3

dp[i]=
dp[i-1]  1~9
+
dp[i-2]  10~26

dp[0]=1 1~9  1
dp[1]=dp[0]+(01~26) 2
dp[2]=dp[0]+dp[1] 3
*/

-- 根据上一种方法,发现只需要dp[0], dp[1], dp[2] 三个元素存储中间状态即可,因此可以用滚动数组优化空间。

Space: O(1)

Time: O(n)

Memory Usage: 33.5 MB, less than 89.69%

Runtime: 0 ms, faster than 100.00%

class Solution { // O(1) space, O(n) time
    public int numDecodings(String s) {
        if (s == null || s.isEmpty()) {
            return 0;
        }
        int n = s.length();
        int[] dp = new int[3];

        for (int i = 0; i < n; i++) {
            char ch = s.charAt(i);
            int num = ch - '0';

            int oneDigit = 0;
            if (num >= 1 && num <= 9) {
                oneDigit = (i > 0) ? dp[(i - 1) % 3] : 1;
            }
            int twoDigits = 0;
            if (i > 0) {
                num += (s.charAt(i - 1) - '0') * 10;
                if (num >= 10 && num <= 26) {
                    twoDigits = (i > 1) ? dp[(i - 2) % 3] : 1;
                }
            }
            dp[i % 3] = oneDigit + twoDigits;
        }
        return dp[(n - 1) % 3];
    }
}
PreviousRange Sum Query - ImmutableNextEdit Distance

Last updated 5 years ago

Was this helpful?

Ref:

,其中k是substring长度。

https://leetcode.com/problems/decode-ways/discuss/30358/Java-clean-DP-solution-with-explanation
substring 是 O(k) 时间复杂度