LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Topological Sorting
  • Problems List
  • DFS based approach
  • BFS based approach
  • Kahn’s algorithm for Topological Sorting (In-degree Based)

Was this helpful?

  1. Graph & Search

Topological Sorting

PreviousThe Maze IIINextIsland Perimeter

Last updated 5 years ago

Was this helpful?

Topological Sorting

Problems List

DFS based approach

TBD

// A Java program to print topological sorting of a DAG 
import java.io.*; 
import java.util.*; 

// This class represents a directed graph using adjacency 
// list representation 
class Graph 
{ 
    private int V; // No. of vertices 
    private LinkedList<Integer> adj[]; // Adjacency List 

    //Constructor 
    Graph(int v) 
    { 
        V = v; 
        adj = new LinkedList[v]; 
        for (int i=0; i<v; ++i) 
            adj[i] = new LinkedList(); 
    } 

    // Function to add an edge into the graph 
    void addEdge(int v,int w) { adj[v].add(w); } 

    // A recursive function used by topologicalSort 
    void topologicalSortUtil(int v, boolean visited[], 
                            Stack stack) 
    { 
        // Mark the current node as visited. 
        visited[v] = true; 
        Integer i; 

        // Recur for all the vertices adjacent to this 
        // vertex 
        Iterator<Integer> it = adj[v].iterator(); 
        while (it.hasNext()) 
        { 
            i = it.next(); 
            if (!visited[i]) 
                topologicalSortUtil(i, visited, stack); 
        } 

        // Push current vertex to stack which stores result 
        stack.push(new Integer(v)); 
    } 

    // The function to do Topological Sort. It uses 
    // recursive topologicalSortUtil() 
    void topologicalSort() 
    { 
        Stack stack = new Stack(); 

        // Mark all the vertices as not visited 
        boolean visited[] = new boolean[V]; 
        for (int i = 0; i < V; i++) 
            visited[i] = false; 

        // Call the recursive helper function to store 
        // Topological Sort starting from all vertices 
        // one by one 
        for (int i = 0; i < V; i++) 
            if (visited[i] == false) 
                topologicalSortUtil(i, visited, stack); 

        // Print contents of stack 
        while (stack.empty()==false) 
            System.out.print(stack.pop() + " "); 
    } 

    // Driver method 
    public static void main(String args[]) 
    { 
        // Create a graph given in the above diagram 
        Graph g = new Graph(6); 
        g.addEdge(5, 2); 
        g.addEdge(5, 0); 
        g.addEdge(4, 0); 
        g.addEdge(4, 1); 
        g.addEdge(2, 3); 
        g.addEdge(3, 1); 

        System.out.println("Following is a Topological " + 
                        "sort of the given graph"); 
        g.topologicalSort(); 
    } 
} 
// This code is contributed by Aakash Hasija

BFS based approach

Kahn’s algorithm for Topological Sorting (In-degree Based)

Definition

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge uv, vertex u comes before v in the ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

The approach is based on:

A DAG has at least one vertex with in-degree 0 and one vertex with out-degree 0.

Algorithm

Steps involved in finding the topological ordering of a DAG:

Step-1: Compute in-degree (number of incoming edges) for each of the vertex present in the DAG and initialize the count of visited nodes as 0.

Step-2: Pick all the vertices with in-degree as 0 and add them into a queue (Enqueue operation)

Step-3: Remove a vertex from the queue (Dequeue operation) and then.

  1. Increment count of visited nodes by 1.

  2. Decrease in-degree by 1 for all its neighboring nodes.

  3. If in-degree of a neighboring nodes is reduced to zero, then add it to the queue.

Step 5: Repeat Step 3 until the queue is empty.

Step 5 :If count of visited nodes is not equal to the number of nodes in the graph then the topological sort is not possible for the given graph.

How to find in-degree of each node? There are 2 ways to calculate in-degree of every vertex: Take an in-degree array which will keep track of 1)Traverse the array of edges and simply increase the counter of the destination node by 1.

for each node in Nodes
    indegree[node] = 0;
for each edge(src,dest) in Edges
    indegree[dest]++

Time Complexity: O(V+E)

2)Traverse the list for every node and then increment the in-degree of all the nodes connected to it by 1.

    for each node in Nodes
        If (list[node].size()!=0) then
        for each dest in list
            indegree[dest]++;

Time Complexity: The outer for loop will be executed V number of times and the inner for loop will be executed E number of times, Thus overall time complexity is O(V+E).

The overall time complexity of the algorithm is O(V+E)

Implementation

// A Java program to print topological sorting of a graph 
// using indegrees 
import java.util.*; 

//Class to represent a graph 
class Graph 
{ 
    int V;// No. of vertices 

    //An Array of List which contains 
    //references to the Adjacency List of 
    //each vertex 
    List <Integer> adj[]; 
    public Graph(int V)// Constructor 
    { 
        this.V = V; 
        adj = new ArrayList[V]; 
        for(int i = 0; i < V; i++) 
            adj[i]=new ArrayList<Integer>(); 
    } 

    // function to add an edge to graph 
    public void addEdge(int u,int v) 
    { 
        adj[u].add(v); 
    } 
    // prints a Topological Sort of the complete graph     
    public void topologicalSort() 
    { 
        // Create a array to store indegrees of all 
        // vertices. Initialize all indegrees as 0. 
        int indegree[] = new int[V]; 

        // Traverse adjacency lists to fill indegrees of 
        // vertices. This step takes O(V+E) time         
        for(int i = 0; i < V; i++) 
        { 
            ArrayList<Integer> temp = (ArrayList<Integer>) adj[i]; 
            for(int node : temp) 
            { 
                indegree[node]++; 
            } 
        } 

        // Create a queue and enqueue all vertices with 
        // indegree 0 
        Queue<Integer> q = new LinkedList<Integer>(); 
        for(int i = 0;i < V; i++) 
        { 
            if(indegree[i]==0) 
                q.add(i); 
        } 

        // Initialize count of visited vertices 
        int cnt = 0; 

        // Create a vector to store result (A topological 
        // ordering of the vertices) 
        Vector <Integer> topOrder=new Vector<Integer>(); 
        while(!q.isEmpty()) 
        { 
            // Extract front of queue (or perform dequeue) 
            // and add it to topological order 
            int u=q.poll(); 
            topOrder.add(u); 

            // Iterate through all its neighbouring nodes 
            // of dequeued node u and decrease their in-degree 
            // by 1 
            for(int node : adj[u]) 
            { 
                // If in-degree becomes zero, add it to queue 
                if(--indegree[node] == 0) 
                    q.add(node); 
            } 
            cnt++; 
        } 

        // Check if there was a cycle         
        if(cnt != V) 
        { 
            System.out.println("There exists a cycle in the graph"); 
            return ; 
        } 

        // Print topological order             
        for(int i : topOrder) 
        { 
            System.out.print(i+" "); 
        } 
    } 
} 
// Driver program to test above functions 
class Main 
{ 
    public static void main(String args[]) 
    { 
        // Create a graph given in the above diagram 
        Graph g=new Graph(6); 
        g.addEdge(5, 2); 
        g.addEdge(5, 0); 
        g.addEdge(4, 0); 
        g.addEdge(4, 1); 
        g.addEdge(2, 3); 
        g.addEdge(3, 1); 
        System.out.println("Following is a Topological Sort"); 
        g.topologicalSort(); 

    } 
}

Source: GeeksforGeeks:

Course Schedule II
https://www.geeksforgeeks.org/topological-sorting/
https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/