Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
Note:
The same word in the dictionary may be reused multiple times in the segmentation.
You may assume the dictionary does not contain duplicate words.
Example 1:
Copy Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:
Copy Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Copy Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false
Analysis
不是一般的DP,在这类有 Word Dict的题目时,容易想到用Trie来存,但是并不一定能够带来算法效率的提升。
用dp[i]
来表示从0到i, 即[0, 1)
,左闭右开区间,是否满足可以分解成的词都来自字典。
状态转移方程:dp[i] = dp[j] && wordDict.contains(s.substring(j, i))
起始条件:dp[0] = true;
答案:dp[s.length()]
Solution
DP - O(n) space, O(n^2) - (14ms, 18.91% AC)
Copy class Solution {
public boolean wordBreak ( String s , List < String > wordDict) {
/*
HashSet<String> wordSet = new HashSet<String>();
for (String word: wordDict) {
wordSet.add(word);
}
*/
Set < String > wordSet = new HashSet(wordDict) ;
boolean isWord[] = new boolean [ s . length () + 1 ];
isWord[ 0 ] = true ;
for ( int i = 1 ; i < s . length () + 1 ; i ++ ) {
for ( int j = 0 ; j < i; j ++ ) {
if (isWord[j] && wordSet . contains ( s . substring (j , i))) {
isWord[i] = true ;
break ;
}
}
}
return isWord[ s . length ()];
}
}
DP - without converting list to set (7ms, 74.94% AC)
Copy class Solution {
public boolean wordBreak ( String s , List < String > wordDict) {
boolean [] dp = new boolean [ s . length () + 1 ];
dp[ 0 ] = true ;
for ( int i = 1 ; i <= s . length (); i ++ ) {
for ( int j = i - 1 ; j >= 0 ; j -- ) {
dp[i] = dp[j] && wordDict . contains ( s . substring (j , i));
if (dp[i]) break ;
}
}
return dp[ s . length ()];
}
}
DP - Optimize with Max Length constraint (2ms, 100%)
Copy class Solution {
private int getMaxLength ( List < String > wordDict) {
int max = 0 ;
for ( String word : wordDict) {
if ( word . length () > max) {
max = word . length ();
}
}
return max;
}
public boolean wordBreak ( String s , List < String > wordDict) {
boolean [] dp = new boolean [ s . length () + 1 ];
dp[ 0 ] = true ;
int maxLen = getMaxLength(wordDict) ;
for ( int i = 1 ; i <= s . length (); i ++ ) {
for ( int j = i - 1 ; j >= 0 && i - j <= maxLen; j -- ) {
dp[i] = dp[j] && wordDict . contains ( s . substring (j , i));
if (dp[i]) {
break ;
}
}
}
return dp[ s . length ()];
}
}
Another DP Solution
Copy public class Solution {
public boolean wordBreak ( String s , Set < String > dict) {
boolean [] f = new boolean [ s . length () + 1 ];
f[ 0 ] = true ;
for ( int i = 1 ; i <= s . length (); i ++ ){
for ( String str : dict){
if ( str . length () <= i){
if (f[i - str . length ()]){
if ( s . substring (i - str . length () , i) . equals (str)){
f[i] = true ;
break ;
}
}
}
}
}
return f[ s . length ()];
}
}
Reference
https://leetcode.com/problems/word-break/discuss/43886/Evolve-from-brute-force-to-optimal-a-review-of-all-solutions
https://leetcode.com/problems/word-break/discuss/43790/Java-implementation-using-DP-in-two-ways