LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Analysis
  • Dynamic Programming
  • Mathematical
  • BFS
  • Solution
  • Reference

Was this helpful?

  1. Dynamic Programming

Perfect Squares

#math #dynamicprogramming

Given a positive integer n, find the least number of perfect square numbers (for example,1, 4, 9, 16, ...) which sum to n.

Example 1:

Input: n = 12
Output: 3 
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

Analysis

Dynamic Programming

用DP关键在于定义状态和找到转化关系。这里用dp[i]代表对i的perfect squares count,转化关系并不是很直观:

dp[n] = Min{ dp[n - i*i] + 1 }, for n - i*i >=0 && i >= 1

具体推理如下:

The most intuitive approach besides brute force would probably be dynamic programming, whether it's bottom up iteration or recursion with memoization, they all based on the recurrence relation:

dp[0] = 0 
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 } 
      = Min{ dp[3]+1, dp[0]+1 } 
      = 1                
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 } 
      = Min{ dp[4]+1, dp[1]+1 } 
      = 2
                        .
                        .
                        .
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 } 
       = Min{ dp[12]+1, dp[9]+1, dp[4]+1 } 
       = 2
                        .
                        .
                        .
dp[n] = Min{ dp[n - i*i] + 1 },  for n - i*i >=0 && i >= 1

where dp[n] stands for the perfect squares count of the given n

关于DP,这题的特点是 (by @mnmunknown):

  • 要凑出来一个和正好是 n 的选择组合;

  • 能选的元素是固定数量的 perfect square (有的会超) ;

  • 一个元素可以选多次;

说明这其实是个背包问题。

Mathematical

BFS

用BFS乍一看较难理解,其实在于问题转化:

把数字0, 1, ..., n看成一个图graph的节点node,节点i, j 连接的条件是

j = i + (a perfect square number) or i = j + (a perfect square number)

已知起始点0,和终点n,这样问题就转化为一个最短路径问题。故使用BFS。

// Consider a graph which consists of number 0, 1,...,n as
// its nodes. Node j is connected to node i via an edge if  
// and only if either j = i + (a perfect square number) or 
// i = j + (a perfect square number). Starting from node 0, 
// do the breadth-first search. If we reach node n at step 
// m, then the least number of perfect square numbers which 
// sum to n is m. Here since we have already obtained the 
// perfect square numbers, we have actually finished the 
// search at step 1.

Solution

Dynamic Programming - Iterative Bottom Up (~ 22ms AC)

class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j * j <= i; j++) {
                 dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
            } 
        }
        return dp[n];
    }
}

DP another version

class Solution {
    public int numSquares(int n) {

        int[] dp = new int[n + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;
        for(int i = 1; i <= n; ++i) {
            int min = Integer.MAX_VALUE;
            int j = 1;
            while(i - j*j >= 0) {
                min = Math.min(min, dp[i - j*j] + 1);
                j++;
        }

        dp[i] = min;
    }        
    return dp[n];

    }
}

Mathematical - (1ms AC)

class Solution {
    // Based on Lagrange's Four Square theorem, there
    // are only 4 possible results: 1, 2, 3, 4.
    public int numSquares(int n)
    {
        // If n is a perfect square, return 1.
        if(is_square(n))
        {
            return 1;
        }

        // The result is 4 if and only if n can be written in the
        // form of 4^k*(8*m + 7). Please refer to
        // Legendre's three-square theorem.
        while ((n & 3) == 0) // n%4 == 0
        {
            n >>= 2;
        }
        if ((n & 7) == 7) // n%8 == 7
        {
            return 4;
        }

        // Check whether 2 is the result.
        int sqrt_n = (int)(Math.sqrt(n));
        for(int i = 1; i <= sqrt_n; i++)
        {
            if (is_square(n - i*i))
            {
                return 2;
            }
        }

        return 3;
    }

    private boolean is_square(int num)
    {
        int sqrt_num = (int) Math.sqrt(num);
        return sqrt_num * sqrt_num == num;
    }
}

Recursion Memoization (NOT RECOMMENDED) - (655ms AC 4.86% percentile)

class Solution {
    public int fun(Map<Integer,Integer> map, int target)
    {
        if(map.containsKey(target))
            return map.get(target);
        int temp = Integer.MAX_VALUE;
        for(int i = 1; i<= (int)Math.sqrt(target); i++)
        {
            temp = Math.min(temp, fun(map,target - i*i)+1);    
        }
        map.put(target, temp);
        return temp;
    }
    public int numSquares(int n) {
        int nums = (int)Math.sqrt(n);
        Map<Integer,Integer> map = new HashMap<Integer,Integer>();
        for(int i = 1; i<= (int)Math.sqrt(n); i++)
        {
            map.put(i*i,1);
        }
        return fun(map,n);      

}

BFS Version (~113ms 21.89%)

class Solution {
    public int numSquares(int n) {
        int numOfSquares = 0;

        Queue<Integer> queue = new LinkedList<>();
        Set<Integer> visited = new HashSet<>();
        queue.add(0);
        visited.add(0);

        while (!queue.isEmpty()) {
            int size = queue.size();
            numOfSquares++;
            while (size > 0) {
                int num = queue.poll();
                for (int i = 1; i*i <= n; i++) {
                    int x = num + i*i;
                    if (x == n) {
                        return numOfSquares;
                    }
                    if (x > n) {
                        break;
                    }
                    if (!visited.contains(x)) {
                        queue.offer(x);
                        visited.add(x);
                    }
                }
                size--;
            }
        }
        return numOfSquares;
    }
}

Reference

PreviousBurst BalloonsNextTriangle

Last updated 5 years ago

Was this helpful?

Source:

See [[[[[)

https://leetcode.com/problems/perfect-squares/discuss/71495/An-easy-understanding-DP-solution-in-Java
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem)](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem))](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem)](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem)))](https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem%29]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem%29%29]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem%29]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem]%28https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem%29%29%29)\
https://leetcode.com/problems/perfect-squares/discuss/71488/Summary-of-4-different-solutions-(BFS-DP-static-DP-and-mathematics
https://mnmunknown.gitbooks.io/algorithm-notes/82ff0c_bei_bao_wen_ti.html