A robot is located at the top-left corner of a _m_x_n _grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: _m _and _n _will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
classSolution {public:intuniquePaths(int m,int n) {int N = n + m -2;// how much steps we need to doint k = m -1; // number of steps that need to go downdouble res =1; // here we calculate the total possible path number // Combination(N, k) = n! / (k!(n - k)!) // reduce the numerator and denominator and get // C = ( (n - k + 1) * (n - k + 2) * ... * n ) / k!for (int i =1; i <= k; i++) res = res * (N - k + i) / i;return (int)res; } };