LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • unbounded knapsack problem (UKP)
  • 重复选择 + 最大价值
  • Description
  • Example
  • Analysis
  • Reference

Was this helpful?

  1. Knapsack

Backpack III

PreviousBackpack IINextBackpack IV

Last updated 5 years ago

Was this helpful?

unbounded knapsack problem (UKP)

重复选择 + 最大价值

Hard

Description

Givenn_kind of items with size Aiand value Vi(each item has an infinite number available) and a backpack with size_m. What's the maximum value can you put into the backpack?

You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.

Example

Given 4 items with size[2, 3, 5, 7]and value[1, 5, 2, 4], and a backpack with size10. The maximum value is15.

Analysis

完全背包问题,DP经典

和II不同的是,这道题物品可以重复选择,所以内层遍历j的时候从小到大遍历,这样物品可以重复选取。比如一开始在j的时候取了i,然后随着j的增大,在j'的时候又取了i,而恰好j = j' - A[i],在这种情况下i就被重复选取。如果从大往小遍历则所有物品只能取一次,所以II中是从大往小遍历。

因此可以重复取元素则背包容量从小到大遍历,反之从大到小遍历。

转化为多重背包问题

将其视为多重背包变形,每种物品取的上限是m / A[i]。

  • 可以无限使用物品, 就失去了last i, last unique item的意义: 因为可以重复使用. 所以可以转换一个角度:

    • i. 用 i 种 物品, 拼出j大小, 并且满足题目条件(max value). 这里因为item i可以无限次使用, 所以考虑使用了多少次K.

    • ii. k虽然可以无限, 但是也被 k * A[i]所限制: 最大不能超过背包大小.

  • dp[i][j]: 前i种物品, fill weight j 的背包, 最大价值是多少.

  • dp[i][j] = max {dp[i - 1][j - k*A[i-1]] + k*V[i-1]}, k >= 0, k <= j / A[i-1]

  • Time: O(nmk)

  • 如果k = 0 或者 1, 其实就是 Backpack II: 0-1背包,拿或者不拿

2D - DP 代码实现:

/*
Thoughts:
dp[i][w]: first i types of items to fill weight w, find the max value.
1st loop: which type of item to pick from A
2nd loop: weight from 0 ~ m
3rd loop: # times when A[i] is used.
Goal: dp[n][m]
Condition1: didn't pick A[i - 1], dp[i][j] = dp[i - 1][j];
Condition2: pickced A[i - 1], dp[i][j] = dp[i - 1][j - k * A[i - 1]] + k * V[i - 1];
O(nmk)
*/

public class Solution {
    public int backPackIII(int[] A, int[] V, int m) {
        if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
            return 0;
        }
        int n = A.length;
        int[][] dp = new int[n + 1][m + 1];
        dp[0][0] = 0; // 0 items to fill 0 weight, value = 0

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                for (int k = 1; k * A[i - 1] <= j; k++) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * A[i - 1]] + k * V[i - 1]);
                }
            }
        }

        return dp[n][m];
    }
}

Minor Modified

public class Solution {
    public int backPackIII(int[] A, int[] V, int m) {
        if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
            return 0;
        }
        int n = A.length;
        int[][] dp = new int[n + 1][m + 1];
        dp[0][0] = 0; // 0 items to fill 0 weight, value = 0

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                for (int k = 0; k * A[i - 1] <= j; k++) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * A[i - 1]] + k * V[i - 1]);
                }
            }
        }

        return dp[n][m];
    }
}

时间复杂度优化

  • 优化时间复杂度, 通过画图(见以上示意图)发现:

    • 所计算的 (dp[i - 1][j - k*A[i - 1]] + k * V[i - 1]) ,其实跟同一行的 dp[i][j-A[i-1]] 那个格子相比, 就多出了 V[i-1]

    • 所以没必要每次都 loop over k times

  • 简化: dp[i][j] 其中一个可能就是: dp[i][j - A[i - 1]] + V[i - 1]

  • Time: O(mn)

  • Space: O(mn)

/**
Optimization1: 
- 优化时间复杂度, 画图发现:
- 所计算的 (dp[i - 1][j - k*A[i - 1]] + k * V[i - 1]) 
- 其实跟同一行的 dp[i][j-A[i-1]] 那个格子, 就多出了 V[i-1]
- 所以没必要每次都 loop over k times
- 简化: dp[i][j] 其中一个可能就是: dp[i][j - A[i - 1]] + V[i - 1]

*/
public class Solution {
    public int backPackIII(int[] A, int[] V, int m) {
        if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
            return 0;
        }
        int n = A.length;
        int[][] dp = new int[n + 1][m + 1];
        dp[0][0] = 0; // 0 items to fill 0 weight, value = 0

        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                if (j >= A[i - 1]) {
                    dp[i][j] = Math.max(dp[i][j], dp[i][j - A[i - 1]] + V[i - 1]);
                }
            }
        }
        return dp[n][m];
    }
}

空间复杂度优化

空间优化到1维数组

  • 根据上一个优化的情况, 画出 2 rows 网格

    • 发现 dp[i][j] 取决于: 1. dp[i - 1][j], 2. dp[i][j - A[i - 1]]

    • 其中: dp[i - 1][j] 是上一轮 (i-1) 的结算结果, 一定是已经算好, ready to be used 的

    • 然而, 当我们 i++, j++ 之后, 在之前 row = i - 1, col < j 的格子, 全部不需要.

  • 降维简化: 只需要留着 weigth,也就是j这个 dimension, 而 i 这个dimension 可以省略:

    • (i - 1)th row 不过是需要用到之前算出的旧value: 每一轮, j = [0 ~ m], 那么dp[j]本身就有记录旧值的功能.

    • 变成1个一维数组

  • 降维优化的重点: 看双行的左右计算方向

  • Time: O(mn).

  • Space: O(m)

/**
Optimization2: 
- 根据上一个优化的情况, 画出 2 rows 网格
- 发现 dp[i][j] 取决于: 1. dp[i - 1][j], 2. dp[i][j - A[i - 1]]
- 其中: dp[i - 1][j] 是上一轮 (i-1) 的结算结果, 一定是已经算好, ready to be used 的
- 然而, 当我们 i++,j++ 之后, 在之前 row = i - 1, col < j的格子, 全部不需要.
- 降维简化: 只需要留着 weigth 这个 dimension, 而i这个dimension 可以省略: 
- (i - 1) row 不过是需要用到之前算出的旧value: 每一轮, j = [0 ~ m], 那么dp[j]本身就有记录旧值的功能.
*/
public class Solution {
    public int backPackIII(int[] A, int[] V, int m) {
        if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
            return 0;
        }
        int n = A.length;
        int[] dp = new int[m + 1]; // DP on weight
        dp[0] = 0; // 0 items to fill 0 weight, value = 0

        for (int i = 1; i <= n; i++) {
            for (int j = A[i - 1]; j <= m && j >= A[i - 1]; j++) {
                dp[j] = Math.max(dp[j], dp[j - A[i - 1]] + V[i - 1]);
            }
        }
        return dp[m];
    }
}

关于最优化算法的细节:

时间复杂度为 O(mn),空间复杂度为 O(m)

九章:

优化的方法十分简单,我们只需要将 j 的循环由逆向转变为正向即可。 想一想,为什么? 由于同一种物品的个数无限,所以我们可以在任意容量 j 的背包尝试装入当前物品,j 从小向大枚举可以保证所有包含第 i 种物品,体积不超过 j - A[i] 的状态被枚举到。 从而得到时间复杂度为 O(mn),空间复杂度为 O(m) 的优秀算法。

j从大到小取,可以保证dp[j]里面的值是每个item只取了一个的时候的最优值。所以01背包和多重背包的k循环只能从大到小取,而完全背包的k循环从大到小和从小到大都可以。这是01背包/多重背包和完全背包的一个重要区别!

正序和逆序的区别就是,对于正序,j以前的状态是当前行的状态;对于逆序,j以前的状态是上一个行的状态。

Reference

2D - DP示意图:

https://zhengyang2015.gitbooks.io/lintcode/backpack_iii_440.html
https://blog.csdn.net/roufoo/article/details/83117144
awangdev @ GitHub: LintCode - Backpack III
LintCode 440: Backpack III (完全背包问题,DP经典)
jiuzhang tutorial
https://www.jiuzhang.com/tutorial/backpack/94
Backpack III by zhengyang2015