LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Question
  • Analysis
  • Solution

Was this helpful?

  1. Mathematics

Ugly Number II

Question

Ugly number is a number that only have factors 2, 3 and 5.

Design an algorithm to find the nth ugly number. The first 10 ugly numbers are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12...

Notice

Note that 1 is typically treated as an ugly number.

Example

If n = 9, return 10.

Challenge

O(n log n) or O(n) time.

Analysis

Dynamic Programming

有三个prime number 2,3,5,可以设想因为新的ugly number必然是此前已经知道的ugly number再乘以2 或3 或5。 对于uglyNumbers[0],下一个uglyNumbers[1],就将在uglyNumber[0] 2, uglyNumber[0] 3, uglyNumber[0] * 5 之中产生,其中最小的一个就是uglyNumbers[1]。接下来寻找uglyNumbers[2]时,对于2这个数来说,就需要选用uglyNumbers[1]来平衡所得乘积。重复这个过程直到第n个uglyNumber产生。 这种算法的时间复杂度是O(n),因为只需要一次循环,对于每一个循环中ugly number的寻找是可以认为O(1)的。 注意的是起始条件的设定,uglyNumbers[0] = 1,和uglyNumbers[1] = 2,也就是current = 2。

“The ugly-number sequence is 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, … because every number can only be divided by 2, 3, 5, one way to look at the sequence is to split the sequence to three groups as below:

(1) 1×2, 2×2, 3×2, 4×2, 5×2, …
(2) 1×3, 2×3, 3×3, 4×3, 5×3, …
(3) 1×5, 2×5, 3×5, 4×5, 5×5, …

We can find that every subsequence is the ugly-sequence itself (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15 …) multiply 2, 3, 5.

Then we use similar merge method as merge sort, to get every ugly number from the three subsequence.

Every step we choose the smallest one, and move one step after,including nums with same value.”

Ref:

PriorityQueue

也可以考虑用Heap,也就是将无重复的(de-duped) ugly number存入一个Min-Heap,运行poll() n - 1次,那么得到的就是第n个ugly number(1是第一个ugly number)。去除重复的办法有1. 利用HashMap/HashSet存储生成过的unique的ugly number,这样每次存入Heap时检查是否已经生成过了,确保只存入新的值 2. 在Heap poll()的时候,如果peek()下一个值和当前poll()的值相同,则继续poll(),直到peek()的值不同为止。

Solution

O(n) Scan

import java.util.ArrayList;

class Solution {
    /**
     * @param n an integer
     * @return the nth prime number as description.
     */
    public int nthUglyNumber(int n) {
        if (n == 0 || n == 1) {
            return 1;
        }
        ArrayList<Integer> uglyNumbers = new ArrayList<Integer>();
        uglyNumbers.add(1);
        int p1 = 0;
        int p2 = 0;
        int p3 = 0;
        int current = 2;

        for (int i = 0; i < n; i++) {
            while (uglyNumbers.get(p1) * 2 < current) {
                p1++;
            }
            int min1 = uglyNumbers.get(p1) * 2;

            while (uglyNumbers.get(p2) * 3 < current) {
                p2++;
            }
            int min2 = uglyNumbers.get(p2) * 3;

            while (uglyNumbers.get(p3) * 5 < current) {
                p3++;
            }
            int min3 = uglyNumbers.get(p3) * 5;

            int next = Math.min(Math.min(min1, min2), min3);
            current = next + 1;
            uglyNumbers.add(next);
        }
        return uglyNumbers.get(n - 1);
    }
}

O(n) Scan 2

public class Solution {
    public int nthUglyNumber(int n) {
        int[] ugly = new int[n];
        ugly[0] = 1;
        int index2 = 0, index3 = 0, index5 = 0;
        int factor2 = 2, factor3 = 3, factor5 = 5;
        for(int i=1;i<n;i++){
            int min = Math.min(Math.min(factor2,factor3),factor5);
            ugly[i] = min;
            if(factor2 == min)
                factor2 = 2*ugly[++index2];
            if(factor3 == min)
                factor3 = 3*ugly[++index3];
            if(factor5 == min)
                factor5 = 5*ugly[++index5];
        }
        return ugly[n-1];
    }
}

O(n) A more concise version

    public int nthUglyNumber(int n) {
        int[] nums = new int[n];
        int index2 = 0, index3 = 0, index5 = 0;
        nums[0] = 1;
        for(int i = 1; i < nums.length; i++){
            nums[i] = Math.min(nums[index2] * 2, Math.min(nums[index3] * 3, nums[index5] * 5));
            if(nums[i] == nums[index2] * 2)
                index2++;
            if(nums[i] == nums[index3] * 3)
                index3++;
            if(nums[i] == nums[index5] * 5)
                index5++;
        }
        return nums[n - 1];
    }

O(nlogn) HashMap + Heap (use HashMap to dedupe element in Heap)

class Solution {
    /**
     * @param n an integer
     * @return the nth prime number as description.
     */
    public int nthUglyNumber(int n) {
        // Write your code here
        Queue<Long> Q = new PriorityQueue<Long>();
        HashSet<Long> inQ = new HashSet<Long>();
        Long[] primes = new Long[3];
        primes[0] = Long.valueOf(2);
        primes[1] = Long.valueOf(3);
        primes[2] = Long.valueOf(5);
        for (int i = 0; i < 3; i++) {
            Q.add(primes[i]);
            inQ.add(primes[i]);
        }
        Long number = Long.valueOf(1);
        for (int i = 1; i < n; i++) {
            number = Q.poll();
            for (int j = 0; j < 3; j++) {
                if (!inQ.contains(primes[j] * number)) {
                    Q.add(number * primes[j]);
                    inQ.add(number * primes[j]);
                }
            }
        }
        return number.intValue();
    }
}

Heap - PriorityQueue

class Solution {
    public int nthUglyNumber(int n) {
        if(n <= 0){
            return 0;
        }

        PriorityQueue<Long> pq = new PriorityQueue<>();

        pq.offer(1l);

        for(int i = 0; i < n-1; i++){
            long tmp = pq.poll();

            while(!pq.isEmpty() && pq.peek() == tmp){
                tmp = pq.poll();
            }

            pq.offer(tmp * 2);
            pq.offer(tmp * 3);
            pq.offer(tmp * 5);
        }

        return pq.poll().intValue();
    }
}

DP + DFS (2ms AC)

class Solution {
    public int nthUglyNumber(int n) {
        int[] dp = new int[n];
        dp[0] = 1;
        return DFS(dp, 1, 0, 0, 0, n);
    }

    private int DFS(int[] dp, int i, int p2, int p3, int p5, int n) {
        if (i == n) return dp[n - 1];
        dp[i] = Math.min(dp[p2] * 2, Math.min(dp[p3] * 3, dp[p5] * 5));
        if (dp[i] == dp[p2] * 2) p2++;
        if (dp[i] == dp[p3] * 3) p3++;
        if (dp[i] == dp[p5] * 5) p5++;
        return DFS(dp, i + 1, p2, p3, p5, n);
    }
}
PreviousUgly NumberNextSuper Ugly Number

Last updated 5 years ago

Was this helpful?

https://leetcode.com/problems/ugly-number-ii/discuss/69362/O(n)-Java-solution?orderBy=most_votes
https://www.geeksforgeeks.org/ugly-numbers/