LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Solution & Analysis
  • LeetCode
  • Straightforward implementation:
  • Optimized implementation:
  • Reference

Was this helpful?

  1. Trees

Diameter of a Binary Tree

PreviousSerialize and Deserialize N-ary TreeNextPrint Binary Trees

Last updated 5 years ago

Was this helpful?

Binary Tree

Easy

Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

Example: Given a binary tree

          1
         / \
        2   3
       / \     
      4   5

Return3, which is the length of the path [4,2,1,3] or [5,2,1,3].

Note:The length of path between two nodes is represented by the number of edges between them.

Source:

The diameter of a tree (sometimes called the width) is the number of nodes on the longest path between two end nodes.

The diagram below shows two trees each with diameter nine, the leaves that form the ends of a longest path are shaded (note that there is more than one path in each tree of length nine, but no path longer than nine nodes).

Solution & Analysis

The diameter of a tree T is the largest of the following quantities:

* the diameter of T’s left subtree * the diameter of T’s right subtree * the longest path between leaves that goes through the root of T (this can be computed from the heights of the subtrees of T)

LeetCode

public class Solution {
    int max = 0;

    public int diameterOfBinaryTree(TreeNode root) {
        maxDepth(root);
        return max;
    }

    private int maxDepth(TreeNode root) {
        if (root == null) return 0;

        int left = maxDepth(root.left);
        int right = maxDepth(root.right);

        max = Math.max(max, left + right);

        return Math.max(left, right) + 1;
    }
}

Straightforward implementation:

O(n^2) time complexity

// Recursive optimized Java program to find the diameter of a 
// Binary Tree 

/* Class containing left and right child of current 
node and key value*/
class Node 
{ 
    int data; 
    Node left, right; 

    public Node(int item) 
    { 
        data = item; 
        left = right = null; 
    } 
} 

/* Class to print the Diameter */
class BinaryTree 
{ 
    Node root; 

    /* Method to calculate the diameter and return it to main */
    int diameter(Node root) 
    { 
        /* base case if tree is empty */
        if (root == null) 
            return 0; 

        /* get the height of left and right sub trees */
        int lheight = height(root.left); 
        int rheight = height(root.right); 

        /* get the diameter of left and right subtrees */
        int ldiameter = diameter(root.left); 
        int rdiameter = diameter(root.right); 

        /* Return max of following three 
        1) Diameter of left subtree 
        2) Diameter of right subtree 
        3) Height of left subtree + height of right subtree + 1 */
        return Math.max(lheight + rheight + 1, 
                        Math.max(ldiameter, rdiameter)); 

    } 

    /* A wrapper over diameter(Node root) */
    int diameter() 
    { 
        return diameter(root); 
    } 

    /*The function Compute the "height" of a tree. Height is the 
    number f nodes along the longest path from the root node 
    down to the farthest leaf node.*/
    static int height(Node node) 
    { 
        /* base case tree is empty */
        if (node == null) 
            return 0; 

        /* If tree is not empty then height = 1 + max of left 
        height and right heights */
        return (1 + Math.max(height(node.left), height(node.right))); 
    } 

    public static void main(String args[]) 
    { 
        /* creating a binary tree and entering the nodes */
        BinaryTree tree = new BinaryTree(); 
        tree.root = new Node(1); 
        tree.root.left = new Node(2); 
        tree.root.right = new Node(3); 
        tree.root.left.left = new Node(4); 
        tree.root.left.right = new Node(5); 

        System.out.println("The diameter of given binary tree is : "
                        + tree.diameter()); 
    } 
}

Optimized implementation:

The above implementation can be optimized by calculating the height in the same recursion rather than calling a height() separately. Thanks to Amar for suggesting this optimized version. This optimization reduces time complexity to O(n).

O(n) time complexity

// Recursive Java program to find the diameter of a 
// Binary Tree 

/* Class containing left and right child of current 
node and key value*/
class Node 
{ 
    int data; 
    Node left, right; 

    public Node(int item) 
    { 
        data = item; 
        left = right = null; 
    } 
} 

// A utility class to pass heigh object 
class Height 
{ 
    int h; 
} 

/* Class to print the Diameter */
class BinaryTree 
{ 
    Node root; 

    /* define height =0 globally and call diameterOpt(root,height) 
    from main */
    int diameterOpt(Node root, Height height) 
    { 
        /* lh --> Height of left subtree 
        rh --> Height of right subtree */
        Height lh = new Height(), rh = new Height(); 

        if (root == null) 
        { 
            height.h = 0; 
            return 0; /* diameter is also 0 */
        } 

        /* ldiameter --> diameter of left subtree 
        rdiameter --> Diameter of right subtree */
        /* Get the heights of left and right subtrees in lh and rh 
        And store the returned values in ldiameter and ldiameter */
        int ldiameter = diameterOpt(root.left, lh); 
        int rdiameter = diameterOpt(root.right, rh); 

        /* Height of current node is max of heights of left and 
        right subtrees plus 1*/
        height.h = Math.max(lh.h, rh.h) + 1; 

        return Math.max(lh.h + rh.h + 1, Math.max(ldiameter, rdiameter)); 
    } 

    /* A wrapper over diameter(Node root) */
    int diameter() 
    { 
        Height height = new Height(); 
        return diameterOpt(root, height); 
    } 

    /*The function Compute the "height" of a tree. Height is the 
    number f nodes along the longest path from the root node 
    down to the farthest leaf node.*/
    static int height(Node node) 
    { 
        /* base case tree is empty */
        if (node == null) 
            return 0; 

        /* If tree is not empty then height = 1 + max of left 
        height and right heights */
        return (1 + Math.max(height(node.left), height(node.right))); 
    } 

    public static void main(String args[]) 
    { 
        /* creating a binary tree and entering the nodes */
        BinaryTree tree = new BinaryTree(); 
        tree.root = new Node(1); 
        tree.root.left = new Node(2); 
        tree.root.right = new Node(3); 
        tree.root.left.left = new Node(4); 
        tree.root.left.right = new Node(5); 

        System.out.println("The diameter of given binary tree is : "
                        + tree.diameter()); 
    } 
}

Reference

https://www.geeksforgeeks.org/diameter-of-a-binary-tree/
https://www.geeksforgeeks.org/diameter-of-a-binary-tree/
Diameter of a Binary Tree in O(n) [A new method]
Diameter of an N-ary tree
http://www.cs.duke.edu/courses/spring00/cps100/assign/trees/diameter.html