Linked List Random Node
Reservoir Sampling
Medium
Given a singly linked list, return a random node's value from the linked list. Each node must have thesame probabilityof being chosen.
Follow up: What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?
Example:
// Init a singly linked list [1,2,3].
ListNode head = new ListNode(1);
head.next = new ListNode(2);
head.next.next = new ListNode(3);
Solution solution = new Solution(head);
// getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning.
solution.getRandom();Solution
Reservoir Sampling
O(1) space, O(n) time
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
private Random rand;
private ListNode head;
/** @param head The linked list's head.
Note that the head is guaranteed to be not null, so it contains at least one node. */
public Solution(ListNode head) {
this.head = head;
rand = new Random();
}
/** Returns a random node's value. */
public int getRandom() {
int result = -1;
ListNode p = head;
int count = 0;
while (p != null) {
count++;
if (rand.nextInt(count) < 1) {
result = p.val;
}
p = p.next;
}
return result;
}
}
/**
* Your Solution object will be instantiated and called as such:
* Solution obj = new Solution(head);
* int param_1 = obj.getRandom();
*/A more generic one for k > 1 reservoir sampling
以上的方案都需要每次getRandom()时遍历全部的list,不甚高效。
Random of the index number itself
初始化时就得到总长度length,在getRandom()时再随机一个index,作为要取的index,遍历list到那个index取出值返回。
这个在best case会比reservoir sampling更快,因为有可能第一个就返回了。但是在OJ中实测没有明显区别。
Reference
Last updated
Was this helpful?