Longest Palindromic Substring
Dynamic Programming, String
Medium
Question
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
Example
Given the string = "abcdzdcab", return "cdzdc".
Challenge
O(n^2) time is acceptable. Can you do it in O(n) time.
Tags
String
Related Problems
Easy Valid Palindrome 22 % Medium Longest Palindromic Substring 26 % Medium Palindrome Partitioning II 22 %
Analysis
区间类动态规划
Time O(n^2), Space O(n^2)
用dp[i][j]来存DP的状态,需要较多的额外空间: Space O(n^2)
DP的4个要素
状态:
dp[i][j]:s.charAt(i)到s.charAt(j)是否构成一个Palindrome
转移方程:
dp[i][j] = s.charAt(i) == s.charAt(j) && (j - i <= 2 || dp[i + 1][j - 1])
初始化:
dp[i][j] = truewhenj - i <= 2
结果:
找
maxLen = j - i + 1;,并得到相应longest substring:longest = s.substring(i, j + 1);
中心扩展
这种方法基本思想是遍历数组,以其中的1个元素或者2个元素作为palindrome的中心,通过辅助函数,寻找能拓展得到的最长子字符串。外层循环 O(n),内层循环O(n),因此时间复杂度 Time O(n^2),相比动态规划二维数组存状态的方法,因为只需要存最长palindrome子字符串本身,这里空间更优化:Space O(1)
Manacher's Algorithm
这种算法可以达到O(n)时间,但是并不很通用,因此这里略过讨论。具体参考:
Solution
区间DP,Time O(n^2) Space O(n^2)
DP - Time O(n^2), Space O(n^2)
外层循环区间长度,内层循环区间起点
*Another implementation DP - Time O(n^2), space O(n^2)
外层循环区间起点,内层循环区间终点
递推公式中可以看到,首先知道了
i + 1才会知道i,所以只需要倒着遍历i就行了。类似的,先知道
j - 1才知道j,因此顺着遍历j
Space Optimized DP - Time O(n^2), space O(n)
Expand Around Center - Time O(n^2) Space O(1)
Another expand-center implementation
Expand Center - O(n^2) time, O(1) space
@jinwu
7 ms, faster than 99.69%
Reference
Last updated
Was this helpful?