Stone Game
Note the problem description in LintCode is different from LeetCode for "Stone Game". Here we discuss the LintCode version:
https://www.lintcode.com/problem/stone-game/description
Question
There is a stone game.At the beginning of the game the player picks n
piles of stones in a line.
The goal is to merge the stones in one pile observing the following rules:
At each step of the game, the player can merge two adjacent piles to a new pile.
The score is the number of stones in the new pile.
You are to determine the minimum of the total score.
Example
For [4, 1, 1, 4]
, in the best solution, the total score is 18
:
1. Merge second and third piles => [4, 2, 4], score +2
2. Merge the first two piles => [6, 4],score +6
3. Merge the last two piles => [10], score +10
Other two examples:
[1, 1, 1, 1]
return 8
[4, 4, 5, 9]
return 43
Tags
Dynamic Programming
Related Problems
Hard Burst Balloons 29 %
Analysis
死胡同:容易想到的一个思路从小往大,枚举第一次合并是在哪?
转而用记忆化搜索的思路,从大到小,先考虑最后的0 ~ n-1
合并的总花费。
Dynamic Programming
DP四要素
State:
dp[i][j]
表示把第i到第j个石子合并到一起的最小花费
Function:
预处理
sum[i,j]
表示i到j所有石子价值和dp[i][j] = min(dp[i][k]+dp[k+1][j]+sum[i,j])
对于所有k
属于{i,j}
Intialize:
for each i
dp[i][i] = 0
Answer:
dp[0][n-1]
区间型DP,利用二维数组下标表示下标范围。 需要注意的是对状态转移方程的理解,也就是对每一种分割方式进行遍历.
Divide & Conquer + Memoization
分割成子问题的思路在于用不同的pivot将原有的数组分割成为不同的区间,并且递归地每一个子区间重复同样的分割过程。
计算interval sum时,已知start和end,那么最好的方式就是预先生成一个prefix sum数组,这样区间和就可以用sum[end + 1] - sum[start + 1 - 1]
来计算.
对于 interval sum ,根据搜索结构可以做一个显而易见的优化,因为每次 split 的 start, pivot, end 我们都知道,而且合并(start, end) 区间的两堆石子,最终的区间和一定为 (start, end) 的区间和,用一维的 prefix sum 数组就可以了。
用 prefix sum 数组要记得初始化时候的 int[n + 1] zero padding,还有取值时候对应的 sum[end + 1] - sum[start + 1 - 1] offset.
每次归并的 cost = 归并两个区间的最优 cost + 两个区间的区间和,即:
int cost = memoizedSearch(start, i, A, dp, sum) + memoizedSearch(i + 1, end, A, dp, sum) + sum[end + 1] - sum[start];
比较要注意的是循环pivot时数组的下标,以下两种实现方式都是可行的 (注意防止出现无限循环,即recursive调用搜索函数时,不能出现start, end又被当成输入的情况):
i
~ [start, end - 1]
, => [start, i]
, [i + 1, end - 1]
for(int i = start; i < end; i++){
int cost = memoizedSearch(start, i, A, dp, sum) +
memoizedSearch(i + 1, end, A, dp, sum) +
sum[end + 1] - sum[start];
min = Math.min(min, cost);
}
i
~ [start + 1, ... end]
, => [start, i - 1]
, [i, end]
for(int i = start + 1; i <= end; i++){
int cost = memoizedSearch(start, i - 1, A, dp, sum) +
memoizedSearch(i, end, A, dp, sum) +
sum[end + 1] - sum[start];
min = Math.min(min, cost);
}
Solution
DP - (252 ms)
public class Solution {
/**
* @param A an integer array
* @return an integer
*/
int search(int l, int r, int[][] f, int[][] visit, int[][] sum) {
if(visit[l][r] == 1) {
return f[l][r];
}
if(l == r) {
visit[l][r] = 1;
return f[l][r];
}
f[l][r] = Integer.MAX_VALUE;
for (int k = l; k < r; k++) {
f[l][r] = Math.min(f[l][r], search(l, k, f, visit, sum) + search(k + 1, r, f, visit, sum) + sum[l][r]);
}
visit[l][r] = 1;
return f[l][r];
}
public int stoneGame(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int n = A.length;
// initialize
int[][] f = new int[n][n];
int[][] visit = new int[n][n];
for (int i = 0; i < n; i++) {
f[i][i] = 0;
}
// preparation
int[][] sum = new int[n][n];
for (int i = 0; i < n; i++) {
sum[i][i] = A[i];
for (int j = i + 1; j < n; j++) {
sum[i][j] = sum[i][j - 1] + A[j];
}
}
return search(0, n-1, f, visit, sum);
}
}
(Preferred) Divide and Conquer + Memoization (251 ms AC)
public class Solution {
/**
* @param A an integer array
* @return an integer
*/
public int stoneGame(int[] A) {
// Write your code here
if(A == null || A.length == 0) return 0;
int n = A.length;
// Minimum cost to merge interval dp[i][j]
int[][] dp = new int[n][n];
int[] sum = new int[n + 1];
// Pre-process interval sum
for(int i = 0; i < n; i++){
sum[i + 1] = sum[i] + A[i];
}
return memoizedSearch(0, n - 1, A, dp, sum);
}
private int memoizedSearch(int start, int end, int[] A, int[][] dp, int[] sum){
if(start > end) return 0;
if(start == end) return 0;
if(start + 1 == end) return A[start] + A[end];
if(dp[start][end] != 0) return dp[start][end];
int min = Integer.MAX_VALUE;
for(int i = start; i < end; i++){
int cost = memoizedSearch(start, i, A, dp, sum) +
memoizedSearch(i + 1, end, A, dp, sum) +
sum[end + 1] - sum[start];
min = Math.min(min, cost);
}
dp[start][end] = min;
return min;
}
}
Reference
Last updated
Was this helpful?