LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Question
  • Analysis
  • Sort Array
  • Max Heap
  • Quick Select
  • Solution
  • Sort Array
  • Max Heap
  • Min Heap
  • Quick Select (Partition with two pointers)
  • Quick Select (with random pivot)
  • Reference

Was this helpful?

  1. Heap

Kth Largest Element in an Array

Question

Find K-th largest element in an array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Notice

You can swap elements in the array

Example

In array [9,3,2,4,8], the 3rd largest element is 4.

In array [1,2,3,4,5], the 1st largest element is 5, 2nd largest element is 4, 3rd largest element is 3 and etc.

Challenge

O(n) time, O(1) extra memory.

Analysis

Sort Array

  • O(nlogn) time

Max Heap

  • O(nlogk) running time + O(k) memory

在数字集合中寻找第k大,可以考虑用Max Heap,将数组遍历一遍,加入到一个容量为k的PriorityQueue,最后poll() k-1次,那么最后剩下在堆顶的就是kth largest的数字了。

Quick Select

  • Time Complexity: average = O(n); worst case O(n^2), O(1) space

注意事项:

  • partition的主要思想:将比pivot小的元素放到pivot左边,比pivot大的放到pivot右边

  • pivot的选取决定了partition所得结果的效率,可以选择left pointer,更好的选择是在left和right范围内随机生成一个;

Time Complexity O(n)来自于O(n) + O(n/2) + O(n/4) + ... ~ O(2n),此时每次partition的pivot大约将区间对半分。

So, in the average sense, the problem is reduced to approximately half of its original size, giving the recursion T(n) = T(n/2) + O(n) in which O(n) is the time for partition. This recursion, once solved, gives T(n) = O(n) and thus we have a linear time solution. Note that since we only need to consider one half of the array, the time complexity is O(n). If we need to consider both the two halves of the array, like quicksort, then the recursion will be T(n) = 2T(n/2) + O(n) and the complexity will be O(nlogn).

Of course, O(n) is the average time complexity. In the worst case, the recursion may become T(n) = T(n - 1) + O(n) and the complexity will be O(n^2).

Solution

Sort Array

O(nlogn)

public class Solution {
    public int findKthLargest(int[] nums, int k) {
            final int N = nums.length;
            Arrays.sort(nums);
            return nums[N - k];
    }
}

Max Heap

O(N lg K) running time + O(K) memory

class Solution {
    /*
     * @param k : description of k
     * @param nums : array of nums
     * @return: description of return
     */
    public int kthLargestElement(int k, int[] nums) {
        if (nums == null || nums.length == 0 || k == 0) {
            return -1;
        }
        PriorityQueue<Integer> heap = new PriorityQueue<Integer>(k, new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });
        for (int i = 0; i < nums.length; i++) {
            heap.offer(nums[i]);
        }
        for (int j = 0; j < k - 1; j++) {
            heap.poll();
        }
        return heap.peek();
    }
};

Min Heap

O(N lg K) running time + O(K) memory

public int findKthLargest(int[] nums, int k) {

    final PriorityQueue<Integer> pq = new PriorityQueue<>();
    for(int val : nums) {
        pq.offer(val);

        if(pq.size() > k) {
            pq.poll();
        }
    }
    return pq.peek();
}

Quick Select: O(N) best case / O(N^2) worst case running time + O(1) memory

    public int findKthLargest(int[] nums, int k) {

        k = nums.length - k;
        int lo = 0;
        int hi = nums.length - 1;
        while (lo < hi) {
            final int j = partition(nums, lo, hi);
            if(j < k) {
                lo = j + 1;
            } else if (j > k) {
                hi = j - 1;
            } else {
                break;
            }
        }
        return nums[k];
    }

    private int partition(int[] a, int lo, int hi) {

        int i = lo;
        int j = hi + 1;
        while(true) {
            while(i < hi && less(a[++i], a[lo]));
            while(j > lo && less(a[lo], a[--j]));
            if(i >= j) {
                break;
            }
            exch(a, i, j);
        }
        exch(a, lo, j);
        return j;
    }

    private void exch(int[] a, int i, int j) {
        final int tmp = a[i];
        a[i] = a[j];
        a[j] = tmp;
    }

    private boolean less(int v, int w) {
        return v < w;
    }

Use Shuffle : O(N) guaranteed running time + O(1) space

    public int findKthLargest(int[] nums, int k) {

        shuffle(nums);
        k = nums.length - k;
        int lo = 0;
        int hi = nums.length - 1;
        while (lo < hi) {
            final int j = partition(nums, lo, hi);
            if(j < k) {
                lo = j + 1;
            } else if (j > k) {
                hi = j - 1;
            } else {
                break;
            }
        }
        return nums[k];
    }

    private void shuffle(int a[]) {

        final Random random = new Random();
        for(int ind = 1; ind < a.length; ind++) {
            final int r = random.nextInt(ind + 1);
            exch(a, ind, r);
        }
    }

Quick Select (Partition with two pointers)

O(N) best case / O(N^2) worst case running time + O(1) memory

class Solution {
    /*
     * @param k : description of k
     * @param nums : array of nums
     * @return: description of return
     */
    public int kthLargestElement(int k, int[] nums) {
        if (nums == null || nums.length == 0 || k <= 0 || k > nums.length) {
            return 0;
        }

        return select(nums, 0, nums.length - 1, nums.length - k);

    }

    public int select(int[] nums, int left, int right, int k) {
        if (left == right) {
            return nums[left];
        }

        int pivotIndex = partition(nums, left, right);
        if (pivotIndex == k) {
            return nums[pivotIndex];
        } else if (pivotIndex < k) {
            return select(nums, pivotIndex + 1, right, k);
        }  else {
            return select(nums, left, pivotIndex - 1, k);
        }
    }

    public int partition(int[] nums, int left, int right) {

        // Init pivot, better to be random
        int pivot = nums[left];

        // Begin partition
        while (left < right) {
            while (left < right && nums[right] >= pivot) { // skip nums[i] that equals pivot
                right--;
            }
            nums[left] = nums[right];
            while (left < right && nums[left] <= pivot) { // skip nums[i] that equals pivot
                left++;
            }
            nums[right] = nums[left];
        }

        // Recover pivot to array
        nums[left] = pivot;
        return left;
    }
}

Quick Select (with random pivot)

Animation:

import java.util.Random;

class Solution {
    /*
     * @param k : description of k
     * @param nums : array of nums
     * @return: description of return
     */
    public int kthLargestElement(int k, int[] nums) {
        if (nums == null || nums.length == 0 || k <= 0 || k > nums.length) {
            return 0;
        }

        return select(nums, 0, nums.length - 1, nums.length - k);

    }

    public int select(int[] nums, int left, int right, int k) {
        if (left == right) {
            return nums[left];
        }

        int pivotIndex = partition(nums, left, right);
        if (pivotIndex == k) {
            return nums[pivotIndex];
        } else if (pivotIndex < k) {
            return select(nums, pivotIndex + 1, right, k);
        }  else {
            return select(nums, left, pivotIndex - 1, k);
        }
    }

    public void swap(int[] nums, int x, int y) {
        int tmp = nums[x];
        nums[x] = nums[y];
        nums[y] = tmp;
    }

    public int partition(int[] nums, int left, int right) {

        Random rand = new Random();
        int pivotIndex = rand.nextInt((right - left) + 1) + left;
        // Init pivot
        int pivotValue = nums[pivotIndex];

        swap(nums, pivotIndex, right);

        // First index that nums[firstIndex] > pivotValue
        int firstIndex = left;

        for (int i = left; i <= right - 1; i++) {
            if (nums[i] < pivotValue) {
                swap(nums, firstIndex, i);
                firstIndex++;
            }
        }

        // Recover pivot to array
        swap(nums, right, firstIndex);
        return firstIndex;
    }

    public static void main(String[] args) {
        System.out.println("kth Largest Element: Quick Select");
        int[] A = {21, 3, 34, 5, 13, 8, 2, 55, 1, 19};
        Solution search = new Solution();
        int expResult[] = {1, 2, 3, 5, 8, 13, 19, 21, 34, 55};
        int k = expResult.length;
        int err = 0;
        for (int exp : expResult) {
            if (exp != search.kthLargestElement(k--, A)) {
                System.out.println("Test failed: " + k);
                err++;
            }
        }
        System.out.println("Test finished");
    }
}

LeetCode Quick Select

import java.util.Random;
class Solution {
  int [] nums;

  public void swap(int a, int b) {
    int tmp = this.nums[a];
    this.nums[a] = this.nums[b];
    this.nums[b] = tmp;
  }


  public int partition(int left, int right, int pivot_index) {
    int pivot = this.nums[pivot_index];
    // 1. move pivot to end
    swap(pivot_index, right);
    int store_index = left;

    // 2. move all smaller elements to the left
    for (int i = left; i <= right; i++) {
      if (this.nums[i] < pivot) {
        swap(store_index, i);
        store_index++;
      }
    }

    // 3. move pivot to its final place
    swap(store_index, right);

    return store_index;
  }

  public int quickselect(int left, int right, int k_smallest) {
    /*
    Returns the k-th smallest element of list within left..right.
    */

    if (left == right) // If the list contains only one element,
      return this.nums[left];  // return that element

    // select a random pivot_index
    Random random_num = new Random();
    int pivot_index = left + random_num.nextInt(right - left); 

    pivot_index = partition(left, right, pivot_index);

    // the pivot is on (N - k)th smallest position
    if (k_smallest == pivot_index)
      return this.nums[k_smallest];
    // go left side
    else if (k_smallest < pivot_index)
      return quickselect(left, pivot_index - 1, k_smallest);
    // go right side
    return quickselect(pivot_index + 1, right, k_smallest);
  }

  public int findKthLargest(int[] nums, int k) {
    this.nums = nums;
    int size = nums.length;
    // kth largest is (N - k)th smallest
    return quickselect(0, size - 1, size - k);
  }
}

Reference

LeetCode:

Animation:

PreviousMinimum Cost to Hire K WorkersNextKth Smallest Number in Sorted Matrix

Last updated 5 years ago

Was this helpful?

另外此题用quick sort中的 的思路来解,更优化,参考:

Source:

Source:

[Concise JAVA solution based on Quick Select](

Source:

quick select
http://www.jiuzhang.com/solutions/kth-largest-element/
https://discuss.leetcode.com/topic/15256/4-c-solutions-using-partition-max-heap-priority_queue-and-multiset-respectively
wikipedia: QuickSelect
geekviewpoint: quickselect
csanimated: Quicksort
Solution explained
Solutions using Partition, Max-Heap, priority_queue and multiset respectively
https://leetcode.com/problems/kth-largest-element-in-an-array/discuss/60333/Concise-JAVA-solution-based-on-Quick-Select\
wikipedia: QuickSelect
geekviewpoint: quickselect
csanimated: Quicksort