Merge K Sorted Lists
Merge k Sorted Lists
Heap
Description
Leetcode: Merge k Sorted Lists | LeetCode OJ Lintcode: Merge k Sorted Lists
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Example
Example 1
Input: [2->4->null, null, -1->null]
Output: -1->2->4->null
Example 2
Input: [2->6->null, 5->null, 7->null]
Output: 2->5->6->7->null
Example 3
Input:
[
1->4->5,
1->3->4,
2->6
]
Output: 1->1->2->3->4->4->5->6
题解思路
归并k个已排序链表,可以分解问题拆解成为,重复k次,归并2个已排序链表。不过这种方法会在LeetCode中TLE(超出时间限制)。总共需要k次merge two sorted lists的合并过程。
改进方法:
使用merge sort中的二分的思维,将包含k个链表的列表逐次分成两个部分,再逐次对两个链表合并,这样就有 log(k)次合并过程,每次均使用merge two sorted lists的算法。时间复杂度O(nlog(k)),不需要额外空间,因此空间复杂度O(1)。
使用Priority Queues。这样保持每次取出的节点中是当前最小的,依次加入新的链表,从而得到合并的结果。时间复杂度O(nlogk),空间复杂度O(k) 是PriorityQueue的空间。
源代码
Divide and Conquer
/**
* Definition for ListNode.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int val) {
* this.val = val;
* this.next = null;
* }
* }
*/
public class Solution {
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode dummy = new ListNode(0);
ListNode lastNode = dummy;
while (l1 != null && l2 != null) {
if (l1.val < l2.val) {
lastNode.next = l1;
l1 = l1.next;
} else {
lastNode.next = l2;
l2 = l2.next;
}
lastNode = lastNode.next;
}
if (l1 != null) {
lastNode.next = l1;
} else {
lastNode.next = l2;
}
return dummy.next;
}
/**
* @param lists: a list of ListNode
* @return: The head of one sorted list.
*/
public ListNode mergeKListsNaive(List<ListNode> lists) {
if (lists == null || lists.size() == 0) {
return null;
}
if (lists.size() == 1) {
return lists.get(0);
}
int listSize = lists.size();
ListNode base = lists.get(0);
for (int i = 1; i < listSize; i++) {
base = mergeTwoLists(base, lists.get(i));
}
return base;
}
/**
* @param lists: a list of ListNode
* @return: The head of one sorted list.
*/
public ListNode mergeKLists(List<ListNode> lists) {
if (lists.size() == 0) {
return null;
}
if (lists.size() == 1) {
return lists.get(0);
}
if (lists.size() == 2) {
return mergeTwoLists(lists.get(0), lists.get(1));
}
return mergeTwoLists(
mergeKLists(lists.subList(0, lists.size()/2)),
mergeKLists(lists.subList(lists.size()/2, lists.size()))
);
}
}
Divide & Conquer Another implementation
public class Solution {
/**
* @param lists: a list of ListNode
* @return: The head of one sorted list.
*/
public ListNode mergeKLists(List<ListNode> lists) {
if (lists.size() == 0) {
return null;
}
return mergeHelper(lists, 0, lists.size() - 1);
}
private ListNode mergeHelper(List<ListNode> lists, int start, int end) {
if (start == end) {
return lists.get(start);
}
int mid = start + (end - start) / 2;
ListNode left = mergeHelper(lists, start, mid);
ListNode right = mergeHelper(lists, mid + 1, end);
return mergeTwoLists(left, right);
}
private ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode dummy = new ListNode(0);
ListNode tail = dummy;
while (list1 != null && list2 != null) {
if (list1.val < list2.val) {
tail.next = list1;
tail = list1;
list1 = list1.next;
} else {
tail.next = list2;
tail = list2;
list2 = list2.next;
}
}
if (list1 != null) {
tail.next = list1;
} else {
tail.next = list2;
}
return dummy.next;
}
}
Heap*
public class Solution {
private Comparator<ListNode> ListNodeComparator = new Comparator<ListNode>() {
public int compare(ListNode left, ListNode right) {
if (left == null) {
return 1;
} else if (right == null) {
return -1;
}
return left.val - right.val;
}
};
public ListNode mergeKLists(ArrayList<ListNode> lists) {
if (lists == null || lists.size() == 0) {
return null;
}
Queue<ListNode> heap = new PriorityQueue<ListNode>(lists.size(), ListNodeComparator);
for (int i = 0; i < lists.size(); i++) {
if (lists.get(i) != null) {
heap.add(lists.get(i));
}
}
ListNode dummy = new ListNode(0);
ListNode tail = dummy;
while (!heap.isEmpty()) {
ListNode head = heap.poll();
tail.next = head;
tail = head;
if (head.next != null) {
heap.add(head.next);
}
}
return dummy.next;
}
}
Last updated