Given a _m_x_n _grid filled with non-negative numbers, find a path from top left to bottom right which_minimizes_the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Copy Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Analysis
与 Unique Paths很相似,不过路径有了权重,因此在初始化和状态转移方程上稍有区别:
状态 :dp[i][j]
- 从起点到达(i, j)的最小路径和Min Path Sum
状态转移方程 : dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
- 左侧(i, j - 1)
和上方 (i - 1, j)
位置的路径和较小值,加上(i, j)
位置的权重
初始条件 : dp[0][0] = grid[0][0]
, dp[i][0] = dp[i - 1][0] + grid[i][0]; (i = 0, ... m - 1)
, dp[0][j] = dp[0][j - 1] + grid[0][j]; (j = 0, ..., n - 1)
答案 :dp[m - 1][n - 1]
即终点位置
Solution
DP - O(mn) space, O(mn) time (4 ~ 6ms 51.84% AC)
Copy class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
for (int i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < n; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
}
DP - without extra space (reusing grid[][] array itself)
Copy public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
for(int i=1;i<n;i++){
grid[0][i] += grid[0][i-1];
}
for(int i=1;i<m;i++){
grid[i][0] += grid[i-1][0];
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
grid[i][j] += Math.min(grid[i-1][j], grid[i][j-1]);
}
}
return grid[m-1][n-1];
}