Given a _m_x_n _grid filled with non-negative numbers, find a path from top left to bottom right which_minimizes_the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Copy Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Analysis
与 Unique Paths很相似,不过路径有了权重,因此在初始化和状态转移方程上稍有区别:
状态 :dp[i][j]
- 从起点到达(i, j)的最小路径和Min Path Sum
状态转移方程 : dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
- 左侧(i, j - 1)
和上方 (i - 1, j)
位置的路径和较小值,加上(i, j)
位置的权重
初始条件 : dp[0][0] = grid[0][0]
, dp[i][0] = dp[i - 1][0] + grid[i][0]; (i = 0, ... m - 1)
, dp[0][j] = dp[0][j - 1] + grid[0][j]; (j = 0, ..., n - 1)
答案 :dp[m - 1][n - 1]
即终点位置
Solution
DP - O(mn) space, O(mn) time (4 ~ 6ms 51.84% AC)
Copy class Solution {
public int minPathSum ( int [][] grid) {
if (grid == null || grid . length == 0 || grid[ 0 ] . length == 0 ) return 0 ;
int m = grid . length ;
int n = grid[ 0 ] . length ;
int [][] dp = new int [m][n];
dp[ 0 ][ 0 ] = grid[ 0 ][ 0 ];
for ( int i = 1 ; i < m; i ++ ) {
dp[i][ 0 ] = dp[i - 1 ][ 0 ] + grid[i][ 0 ];
}
for ( int j = 1 ; j < n; j ++ ) {
dp[ 0 ][j] = dp[ 0 ][j - 1 ] + grid[ 0 ][j];
}
for ( int i = 1 ; i < m; i ++ ) {
for ( int j = 1 ; j < n; j ++ ) {
dp[i][j] = Math . min (dp[i][j - 1 ] , dp[i - 1 ][j]) + grid[i][j];
}
}
return dp[m - 1 ][n - 1 ];
}
}
DP - without extra space (reusing grid[][] array itself)
Copy public int minPathSum( int [][] grid) {
int m = grid . length ;
int n = grid[ 0 ] . length ;
for ( int i = 1 ;i < n;i ++ ){
grid[ 0 ][i] += grid[ 0 ][i - 1 ];
}
for ( int i = 1 ;i < m;i ++ ){
grid[i][ 0 ] += grid[i - 1 ][ 0 ];
}
for ( int i = 1 ;i < m;i ++ ){
for ( int j = 1 ;j < n;j ++ ){
grid[i][j] += Math . min (grid[i - 1 ][j] , grid[i][j - 1 ]);
}
}
return grid[m - 1 ][n - 1 ];
}