Minimum Path Sum
Given a _m_x_n _grid filled with non-negative numbers, find a path from top left to bottom right which_minimizes_the sum of all numbers along its path.
Note:You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.Analysis
与 Unique Paths很相似,不过路径有了权重,因此在初始化和状态转移方程上稍有区别:
状态:dp[i][j] - 从起点到达(i, j)的最小路径和Min Path Sum
状态转移方程: dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; - 左侧(i, j - 1)和上方 (i - 1, j)位置的路径和较小值,加上(i, j) 位置的权重
初始条件: dp[0][0] = grid[0][0], dp[i][0] = dp[i - 1][0] + grid[i][0]; (i = 0, ... m - 1), dp[0][j] = dp[0][j - 1] + grid[0][j]; (j = 0, ..., n - 1)
答案:dp[m - 1][n - 1] 即终点位置
Solution
DP - O(mn) space, O(mn) time (4 ~ 6ms 51.84% AC)
DP - without extra space (reusing grid[][] array itself)
Last updated
Was this helpful?