Minimum Path Sum

Given a _m_x_n _grid filled with non-negative numbers, find a path from top left to bottom right which_minimizes_the sum of all numbers along its path.

Note:You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

Analysis

与 Unique Paths很相似,不过路径有了权重,因此在初始化和状态转移方程上稍有区别:

状态dp[i][j] - 从起点到达(i, j)的最小路径和Min Path Sum 状态转移方程: dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; - 左侧(i, j - 1)和上方 (i - 1, j)位置的路径和较小值,加上(i, j) 位置的权重 初始条件: dp[0][0] = grid[0][0], dp[i][0] = dp[i - 1][0] + grid[i][0]; (i = 0, ... m - 1), dp[0][j] = dp[0][j - 1] + grid[0][j]; (j = 0, ..., n - 1)

答案dp[m - 1][n - 1] 即终点位置

Solution

DP - O(mn) space, O(mn) time (4 ~ 6ms 51.84% AC)

DP - without extra space (reusing grid[][] array itself)

Last updated

Was this helpful?