Design Circular Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Your implementation should support following operations:

  • MyCircularQueue(k): Constructor, set the size of the queue to be k.

  • Front: Get the front item from the queue. If the queue is empty, return -1.

  • Rear: Get the last item from the queue. If the queue is empty, return -1.

  • enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.

  • deQueue(): Delete an element from the circular queue. Return true if the operation is successful.

  • isEmpty(): Checks whether the circular queue is empty or not.

  • isFull(): Checks whether the circular queue is full or not.

Example:

MyCircularQueue circularQueue = new MycircularQueue(3); // set the size to be 3
circularQueue.enQueue(1);  // return true
circularQueue.enQueue(2);  // return true
circularQueue.enQueue(3);  // return true
circularQueue.enQueue(4);  // return false, the queue is full
circularQueue.Rear();  // return 3
circularQueue.isFull();  // return true
circularQueue.deQueue();  // return true
circularQueue.enQueue(4);  // return true
circularQueue.Rear();  // return 4

Note:

  • All values will be in the range of [0, 1000].

  • The number of operations will be in the range of [1, 1000].

  • Please do not use the built-in Queue library.

Analysis

Array 数组实现:

重点在于确定循环队列空和满的情况,以及确定下一个rear和front的下标位置。

设定一个 int length 可以记录当前queue的元素个数,和循环队列的大小比较就可以得到是否满,检查length是否为0,则检测队列是否为空。

对于rear和front的下标位置有两种可行思路:

  1. front代表queue的头部元素位置,rear代表queue的尾部元素位置;初始化rear=-1, front=0

  2. front代表queue的头部元素位置,rear代表queue的尾部可以填充新元素的位置;初始化时:rear=0, front=0

Tricky之处在于对于1,读取Front()和Rear()可以直接用front和rear作为下标,但是对于2,读取Rear()时,需要计算下标:(rear + q.length - 1) % q.length

Solution

Array Implementation 1 - init front = 0, rear = -1

Array Implementation 2 - init front = 0, rear = 0

LeetCode Official Solution - Array Implementation

Using (Doubly) Linked List

Last updated

Was this helpful?