Walls and Gates
You are given am x n2D grid initialized with these three possible values.
-1- A wall or an obstacle.0- A gate.INF- Infinity means an empty room. We use the value2^31- 1 = 2147483647to representINFas you may assume that the distance to a gate is less than2147483647.
Fill each empty room with the distance to itsnearestgate. If it is impossible to reach a gate, it should be filled withINF.
Example:
Given the 2D grid:
INF -1 0 INF
INF INF INF -1
INF -1 INF -1
0 -1 INF INFAfter running your function, the 2D grid should be:
3 -1 0 1
2 2 1 -1
1 -1 2 -1
0 -1 3 4Analysis
两种BFS思路:
从empty room出发,寻找找gate;
从gate出发,寻找empty room。
两种思路都跟寻找shortest path有关,因此容易想到用BFS。
但是第一种方法因为是从empty rooms出发,外层循环因为要遍历整个矩阵,时间复杂度就要O(m*n),内层对每一个empty room寻找gate,用BFS实现最多需要O(m*n)时间,因此总时间复杂度就是O(m^2 * n^2),这样是会TLE通过不了OJ的。
第二种思路从gate出发,其实是先遍历矩阵找到gate,放入queue中,之后便顺序出列,这样与每个gate距离为1的empty rooms就会进入队列(注意要更新节点的值防止重复遍历),然后距离为1的节点又对四周的empty rooms遍历,这样保证了与gate距离越远的empty rooms就会出现在queue的越后端。
关于empty rooms到gate的距离,因为在方法二中的遍历顺序确保了遍历到某个empty rooms时,一定是第一次也是最后一次遍历到,因此距离的增加是单调的,而且就是之前将该节点 (row2, col2) 加入queue的那个节点(row1, col1)的距离+1。即:
DFS的解法在于从gate出发进行dfs搜索,但是DFS的问题在于可能会多次搜索到统一位置,并且如果比当前存的距离短,则更新当前的距离,因此算法不够高效稳定。
Solution
BFS - starting from GATE - (23 ms, faster than 18.59%)
LeetCode Official Solution (23 ms, faster than 18.59%)
Reference
LeetCode Solution: https://leetcode.com/problems/walls-and-gates/solution/
Benchmarks of DFS and BFS
https://leetcode.com/problems/walls-and-gates/discuss/72748/Benchmarks-of-DFS-and-BFS
Last updated
Was this helpful?