LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Analysis
  • Queue / Linked List
  • Window Buckets
  • Solution
  • Straightforward Queue Inplementation
  • Window Buckets 固定大小的窗口数组 times, hits @grandyang
  • Reference

Was this helpful?

  1. Data Structure & Design

Design Hit Counter

Design a hit counter which counts the number of hits received in the past 5 minutes.

Each function accepts a timestamp parameter (in seconds granularity) and you may assume that calls are being made to the system in chronological order (ie, the timestamp is monotonically increasing). You may assume that the earliest timestamp starts at 1.

It is possible that several hits arrive roughly at the same time.

Example:

HitCounter counter = new HitCounter();

// hit at timestamp 1.
counter.hit(1);

// hit at timestamp 2.
counter.hit(2);

// hit at timestamp 3.
counter.hit(3);

// get hits at timestamp 4, should return 3.
counter.getHits(4);

// hit at timestamp 300.
counter.hit(300);

// get hits at timestamp 300, should return 4.
counter.getHits(300);

// get hits at timestamp 301, should return 3.
counter.getHits(301);

Follow up: What if the number of hits per second could be very large? Does your design scale?

Analysis

这其实是一个系统设计问题。从simple case入手,不考虑concurrency,scalability,先得到一个可行解。

Queue / Linked List

用Queue,LinkedList都可以直观地实现,依次存入timestamp,当超出时间窗口time window后,就把最早的节点/元素移除。这样getHits()和hit()都能

但是这个方法有个问题在于如果时间窗口time window里,突然有大量hit()请求,queue/linked list都会变得很大,这样空间复杂度space不够优化。

Window Buckets

更进一步的,是因为已知时间窗口,可以设定若干bucket,比如60 spots for 60 seconds。这样每一秒的hit都能归入一个bucket,只需要增加这个bucket内count的数字,而不用担心buckets[]所占用空间大小的剧增。姑且把它称为Window Buckets方法。

考虑Concurrent, Distributed

Solution

Straightforward Queue Inplementation

class HitCounter {
    ArrayDeque trac;
    /** Initialize your data structure here. */
    private final int FIVE_MINUTES = 300;
    public HitCounter() {
        trac = new ArrayDeque<Integer>();
    }

    /** Record a hit.
        @param timestamp - The current timestamp (in seconds granularity). */
    public void hit(int timestamp) {
        trac.addLast(timestamp);
    }

    /** Return the number of hits in the past 5 minutes.
        @param timestamp - The current timestamp (in seconds granularity). */
    public int getHits(int timestamp) {
        while(trac.size() > 0 && ( int) trac.getFirst() + FIVE_MINUTES <= timestamp) {
            trac.removeFirst();
        } return trac.size();
    }
}

Queue

class HitCounter {
    Queue<Integer> q;
    /** Initialize your data structure here. */
    private final int FIVE_MINUTES = 300;
    public HitCounter() {
        q = new LinkedList<Integer>();
    }


    /** Record a hit. 
        @param timestamp - The current timestamp  (in seconds granularity). 
    */
    public void hit(int timestamp) 
    { 
        q.offer(timestamp); 
    } 

    // Time Complexity : O(1) 

    /** Return the number of hits in the past 5 minutes. 
        @param timestamp - The current timestamp (in seconds 
        granularity). 
    */
    public int getHits(int timestamp) 
    { 
        while (!q.isEmpty() && (timestamp - q.peek() >= FIVE_MINUTES)) { 
            q.poll(); 
        } 
        return q.size(); 
    } 
    // Time Complexity : O(n) 

}

/**
 * Your HitCounter object will be instantiated and called as such:
 * HitCounter obj = new HitCounter();
 * obj.hit(timestamp);
 * int param_2 = obj.getHits(timestamp);
 */

定义了两个大小为300的一维数组times和hits,分别用来保存时间戳和点击数,在点击函数中,将时间戳对300取余,然后看此位置中之前保存的时间戳和当前的时间戳是否一样,一样说明是同一个时间戳,那么对应的点击数自增1,如果不一样,说明已经过了五分钟了,那么将对应的点击数重置为1。那么在返回点击数时,我们需要遍历times数组,找出所有在5分中内的位置,然后把hits中对应位置的点击数都加起来即可,参见代码如下:

  • Time: hit() - O(1), getHits() - O(M) where the M is the window size

  • Space: O(M) - the M is window size

class HitCounter {
    int[] hits;
    int[] times; 
    int WINDOW_SIZE = 300;

    /** Initialize your data structure here. */
    public HitCounter() {
        hits = new int[WINDOW_SIZE];
        times = new int[WINDOW_SIZE];
    }

    /** Record a hit.
        @param timestamp - The current timestamp (in seconds granularity). */
    public void hit(int timestamp) {
        int idx = timestamp % WINDOW_SIZE;
        if (times[idx] != timestamp) {
            times[idx] = timestamp;
            hits[idx] = 1;
        } else {
            hits[idx] += 1;
        }

    }

    /** Return the number of hits in the past 5 minutes.
        @param timestamp - The current timestamp (in seconds granularity). */
    public int getHits(int timestamp) {
        int count = 0;
        for (int i = 0; i < WINDOW_SIZE; i++) {
            if (timestamp - times[i] < 300) {
                count += hits[i];
            }
        }
        return count;
    }
}

/**
 * Your HitCounter object will be instantiated and called as such:
 * HitCounter obj = new HitCounter();
 * obj.hit(timestamp);
 * int param_2 = obj.getHits(timestamp);
 */

Reference

PreviousSliding Window MedianNextRead N Characters Given Read4 II - Call multiple times

Last updated 5 years ago

Was this helpful?

这篇博文很好:

Window Buckets 固定大小的窗口数组 times, hits

http://blog.gainlo.co/index.php/2016/09/12/dropbox-interview-design-hit-counter/
@grandyang
Dropbox Interview - Design Hit Count
https://www.geeksforgeeks.org/design-a-hit-counter/
http://www.cnblogs.com/grandyang/p/5605552.html