LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Solution & Analysis
  • Reference

Was this helpful?

  1. Sweep Line & Interval

Closest Pair of Points

PreviousEmployee Free TimeNextMy Calendar I

Last updated 5 years ago

Was this helpful?

Source: GeeksforGeeks:

We are given an array of n points in the plane, and the problem is to find out the closest pair of points in the array. This problem arises in a number of applications.

For example, in air-traffic control, you may want to monitor planes that come too close together, since this may indicate a possible collision.

Solution & Analysis

1)We sort all points according to x coordinates.

2)Divide all points in two halves.

3)Recursively find the smallest distances in both subarrays.

4)Take the minimum of two smallest distances. Let the minimum be d.

5)Create an array strip[] that stores all points which are at most d distance away from the middle line dividing the two sets.

6)Find the smallest distance in strip[].

7)Return the minimum of d and the smallest distance calculated in above step 6.

The great thing about the above approach is, if the array strip[] is sorted according to y coordinate, then we can find the smallest distance in strip[] in O(n) time. In the implementation discussed in previous post, strip[] was explicitly sorted in every recursive call that made the time complexity O(n (Logn)^2), assuming that the sorting step takes O(nLogn) time.

In this post, we discuss an implementation where the time complexity is O(nLogn). The idea is to presort all points according to y coordinates. Let the sorted array be Py[]. When we make recursive calls, we need to divide points of Py[] also according to the vertical line. We can do that by simply processing every point and comparing its x coordinate with x coordinate of middle line.

Following is C++ implementation of O(nLogn) approach.

// A divide and conquer program in C++ to find the smallest distance from a 
// given set of points. 

#include <iostream> 
#include <float.h> 
#include <stdlib.h> 
#include <math.h> 
using namespace std; 

// A structure to represent a Point in 2D plane 
struct Point 
{ 
    int x, y; 
}; 


/* Following two functions are needed for library function qsort(). 
Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */

// Needed to sort array of points according to X coordinate 
int compareX(const void* a, const void* b) 
{ 
    Point *p1 = (Point *)a, *p2 = (Point *)b; 
    return (p1->x - p2->x); 
} 
// Needed to sort array of points according to Y coordinate 
int compareY(const void* a, const void* b) 
{ 
    Point *p1 = (Point *)a, *p2 = (Point *)b; 
    return (p1->y - p2->y); 
} 

// A utility function to find the distance between two points 
float dist(Point p1, Point p2) 
{ 
    return sqrt( (p1.x - p2.x)*(p1.x - p2.x) + 
                (p1.y - p2.y)*(p1.y - p2.y) 
            ); 
} 

// A Brute Force method to return the smallest distance between two points 
// in P[] of size n 
float bruteForce(Point P[], int n) 
{ 
    float min = FLT_MAX; 
    for (int i = 0; i < n; ++i) 
        for (int j = i+1; j < n; ++j) 
            if (dist(P[i], P[j]) < min) 
                min = dist(P[i], P[j]); 
    return min; 
} 

// A utility function to find minimum of two float values 
float min(float x, float y) 
{ 
    return (x < y)? x : y; 
} 


// A utility function to find the distance beween the closest points of 
// strip of given size. All points in strip[] are sorted accordint to 
// y coordinate. They all have an upper bound on minimum distance as d. 
// Note that this method seems to be a O(n^2) method, but it's a O(n) 
// method as the inner loop runs at most 6 times 
float stripClosest(Point strip[], int size, float d) 
{ 
    float min = d; // Initialize the minimum distance as d 

    // Pick all points one by one and try the next points till the difference 
    // between y coordinates is smaller than d. 
    // This is a proven fact that this loop runs at most 6 times 
    for (int i = 0; i < size; ++i) 
        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j) 
            if (dist(strip[i],strip[j]) < min) 
                min = dist(strip[i], strip[j]); 

    return min; 
} 

// A recursive function to find the smallest distance. The array Px contains 
// all points sorted according to x coordinates and Py contains all points 
// sorted according to y coordinates 
float closestUtil(Point Px[], Point Py[], int n) 
{ 
    // If there are 2 or 3 points, then use brute force 
    if (n <= 3) 
        return bruteForce(Px, n); 

    // Find the middle point 
    int mid = n/2; 
    Point midPoint = Px[mid]; 


    // Divide points in y sorted array around the vertical line. 
    // Assumption: All x coordinates are distinct. 
    Point Pyl[mid+1]; // y sorted points on left of vertical line 
    Point Pyr[n-mid-1]; // y sorted points on right of vertical line 
    int li = 0, ri = 0; // indexes of left and right subarrays 
    for (int i = 0; i < n; i++) 
    { 
    if (Py[i].x <= midPoint.x) 
        Pyl[li++] = Py[i]; 
    else
        Pyr[ri++] = Py[i]; 
    } 

    // Consider the vertical line passing through the middle point 
    // calculate the smallest distance dl on left of middle point and 
    // dr on right side 
    float dl = closestUtil(Px, Pyl, mid); 
    float dr = closestUtil(Px + mid, Pyr, n-mid); 

    // Find the smaller of two distances 
    float d = min(dl, dr); 

    // Build an array strip[] that contains points close (closer than d) 
    // to the line passing through the middle point 
    Point strip[n]; 
    int j = 0; 
    for (int i = 0; i < n; i++) 
        if (abs(Py[i].x - midPoint.x) < d) 
            strip[j] = Py[i], j++; 

    // Find the closest points in strip. Return the minimum of d and closest 
    // distance is strip[] 
    return min(d, stripClosest(strip, j, d) ); 
} 

// The main functin that finds the smallest distance 
// This method mainly uses closestUtil() 
float closest(Point P[], int n) 
{ 
    Point Px[n]; 
    Point Py[n]; 
    for (int i = 0; i < n; i++) 
    { 
        Px[i] = P[i]; 
        Py[i] = P[i]; 
    } 

    qsort(Px, n, sizeof(Point), compareX); 
    qsort(Py, n, sizeof(Point), compareY); 

    // Use recursive function closestUtil() to find the smallest distance 
    return closestUtil(Px, Py, n); 
} 

// Driver program to test above functions 
int main() 
{ 
    Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}}; 
    int n = sizeof(P) / sizeof(P[0]); 
    cout << "The smallest distance is " << closest(P, n); 
    return 0; 
}

Reference

https://www.geeksforgeeks.org/closest-pair-of-points-onlogn-implementation/
https://www.geeksforgeeks.org/closest-pair-of-points-using-divide-and-conquer-algorithm/
https://www.geeksforgeeks.org/closest-pair-of-points-onlogn-implementation/
http://www.cs.umd.edu/class/fall2013/cmsc451/Lects/lect10.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/closepoints.pdf
http://www.youtube.com/watch?v=vS4Zn1a9KUc
http://www.youtube.com/watch?v=T3T7T8Ym20M
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem