LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Question
  • Analysis
  • Brute Force
  • Dynamic Programming
  • Two Pointers
  • Monotonic Stack
  • Solution
  • Brute Force
  • Dynamic Programming
  • Two Pointers
  • Monotonic Stack
  • Reference

Was this helpful?

  1. Two Pointers

Trapping Rain Water

PreviousTriangle CountNextContainer with Most Water

Last updated 5 years ago

Was this helpful?

Two Pointers, Stack, Dynamic Programming

Hard

Question

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

Trapping Rain Water

Example

Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

Challenge

O(n) time and O(1) memory

O(n) time and O(n) memory is also acceptable.

Tags

Two Pointers Forward-Backward Traversal Array

Related Problems

  • Medium Container With Most Water

  • Hard Trapping Rain Water II

  • Candy

Analysis

Brute Force

最直觉的想法就是对于每个bar,找到其左边和右边最大的bar height: leftMax, rightMax,再减去bar本身的高度heights[i],就得到该处能存水的量。嵌套两重循环,每次只储存某个bar的左右最大height,因此

Time Complexity O(n^2), Space Complexity O(1)

Dynamic Programming

对于每一个bar来说,能装水的容量取决于左右两侧bar的最大值。扫描两次,一次从左向右,记录对于每一个bar来说其左侧的bar的最大高度left[i],一次从右向左,记录每一个bar右侧bar的最大高度right[i]。第三次扫描,则对于每一个bar,计算

(1)左侧最大height和当前bar的height的差值(left[i] - heights[i])

(2)右侧最大height和当前bar的height的差值(right[i] - heights[i]),

取(1),(2)中结果小的那个作为当前bar的蓄水量。最终求和得到总蓄水量。或者直接找到bari两侧最大height中最小的那个,再找与heights[i]的大于零的差值即可。

The water each bar can trap depends on the maximum height on its left and right. Thus scan twice - from left to right, and right to left and record the max height in each direction. The third time calculate the min difference between left/right height and current bar height. Sum the trapped water to get the final result.

dpLeft[i] = Math.max(dpLeft[i - 1], height[i]); dpRight[i] = Math.max(dpRight[i + 1], height[i]);

Time: O(N), Space: O(2*N)

Two Pointers

Time: O(N), Space: O(1)

Monotonic Stack

每次出栈的时候是处理出栈的栈顶元素而非当前元素. 因为每次需要出栈的时候我们可以确定:

  • height[stk.peek()] < height[stk.peek().peek()], stk.peek().peek() 就是栈顶第二大的元素.

  • height[stk.peek()] < height[i]

Solution

Brute Force

class Solution {
    public int trap(int[] height) {
        if (height == null || height.length <= 2) {
            return 0;
        }
        int ans = 0;
        for (int i = 0; i < height.length; i++) {
            int leftMax = 0; 
            int rightMax = 0;
            int j = i - 1;
            int k = i + 1;
            int waterHeight = 0;
            while (j >= 0) {
                leftMax = Math.max(height[j], leftMax);
                j--;
            }
            while (k < height.length) {
                rightMax = Math.max(height[k], rightMax);
                k++;
            }
            waterHeight = Math.min(leftMax, rightMax);
            ans += Math.max(waterHeight - height[i], 0);
        }
        return ans;
    }
}

Dynamic Programming

public class Solution {
    /**
     * @param heights: an array of integers
     * @return: a integer
     */
    public int trapRainWater(int[] heights) {
        if (heights == null || heights.length < 3) {
            return 0;
        }
        int length = heights.length;

        int[] left = new int[length];
        int[] right = new int[length];

        int trapped = 0;

        // For heights[0] or heights[length - 1], the max left/right height is 0
        left[0] = 0;
        right[length - 1] = 0;

        // Keep track of the max height on the left of height[i]
        for (int i = 1; i < length; i++) {
            left[i] = Math.max(left[i - 1], heights[i - 1]);
        }

        // Keep track of the max height on the right of height[i]
        for (int j = length - 2; j >= 0; j--) {
            right[j] = Math.max(right[j + 1], heights[j + 1]);
        }

        // Calculate the total trapped water
        for (int k = 0; k < length; k++) {
            trapped += Math.max(Math.min(left[k], right[k]) - heights[k], 0);
        }

        return trapped;
    }
}

Two Pointers

class Solution {
    public int trap(int[] height) {
        if (height == null || height.length <= 2) {
            return 0;
        }
        int leftMax = 0, rightMax = 0;
        int left = 0, right = height.length - 1;
        int trapped = 0;
        while (left < right) {
            if (height[left] < height[right]) {
                if (height[left] >= leftMax) {
                    leftMax = height[left];
                } else {
                    trapped += Math.max(leftMax - height[left], 0);
                }
                left++;
            } else {
                if (height[right] >= rightMax) {
                    rightMax = height[right];
                } else {
                    trapped += Math.max(rightMax - height[right], 0);
                }
                right--;
            }
        }
        return trapped;
    }
}

Monotonic Stack

class Solution {
    public int trap(int[] height) {
        int n = height.length;
        Stack<Integer> stk = new Stack<>();
        int res = 0;
        for (int i = 0; i < n; i++) {
            if (stk.isEmpty() || height[i] < height[stk.peek()]) {
                stk.push(i);
            } else {
                while (!stk.isEmpty() && height[i] >= height[stk.peek()]) {
                    int h = height[stk.pop()];
                    if (!stk.isEmpty()) {
                        int len = i - stk.peek() - 1;
                        res += (Math.min(height[i], height[stk.peek()]) - h) * len;
                    }
                }
                stk.push(i);
            }
        }
        return res;
    }
}

Reference

Reference:

:找左边最大和右边最大可以通过两个dp数组来存起来.

: 我们来看一种只需要遍历一次即可的解法,这个算法需要left和right两个指针分别指向数组的首尾位置,从两边向中间扫描,在当前两指针确定的范围内,先比较两头找出较小值,如果较小值是left指向的值,则从左向右扫描,如果较小值是right指向的值,则从右向左扫描,若遇到的值比当较小值小,则将差值存入结果,如遇到的值大,则重新确定新的窗口范围,以此类推直至left和right指针重合。

: 和largest rectangle in histogram一样的思路. 只不过histogram是用递增栈, 这道题是使用递减栈. stack里存的也是index.

https://leetcode.com/articles/trapping-rain-water/
简而言之
@Grandyang
@reeestart
LeetCode Article Solution: Trapping Rain Water
Trapping Rain Water - GeeksforGeeks
LeetCode – Trapping Rain Water (Java) - Program Creek
喜刷刷: LeetCode - Trapping Rain Water
Yu's Garden LeetCode Question 111: Trapping Rain Water
水中的鱼:Trapping Rain Water 解题报告
Trapping Rain Water