Maximal Square

Dynamic Programming

Question

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.

Example

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 4.

Tags

Dynamic Programming Airbnb Facebook

Related Problems

Hard Maximal Rectangle

Analysis

考虑以f[i][j]为右下角顶点可以拓展的正方形边长,那么可以由f[i-1][j]f[i][j-1]f[i-1][j-1]三者的最小值决定f[i][j]的最长边长。

当我们判断以某个点为正方形右下角时最大的正方形时,那它的上方,左方和左上方三个点也一定是某个正方形的右下角,否则该点为右下角的正方形最大就是它自己了。这是定性的判断,那具体的最大正方形边长呢?我们知道,该点为右下角的正方形的最大边长,最多比它的上方,左方和左上方为右下角的正方形的边长多1,最好的情况是是它的上方,左方和左上方为右下角的正方形的大小都一样的,这样加上该点就可以构成一个更大的正方形。但如果它的上方,左方和左上方为右下角的正方形的大小不一样,合起来就会缺了某个角落,这时候只能取那三个正方形中最小的正方形的边长加1了。假设dp[i][j]表示以i,j为右下角的正方形的最大边长,则有

当然,如果这个点在原矩阵中本身就是0的话,那dp[i][j]肯定就是0了。

时间O(mn), 空间O(mn)

DP四要素

  • 状态 State

    • f[i][j] 表示以i和j作为正方形右下角可以拓展的最大边长

  • 方程 Function

    • if matrix[i][j] == 1

      • f[i][j] = min(f[i - 1][j], f[i][j-1], f[i-1][j-1]) + 1;

    • if matrix[i][j] == 0

      • f[i][j] = 0

  • 初始化 Intialization

    • f[i][0] = matrix[i][0];

    • f[0][j] = matrix[0][j];

  • 答案 Answer

    • max{f[i][j]}

可以使用二维滚动数组优化:

  1. 状态 State

    • f[i][j] 表示以i和j作为正方形右下角可以拓展的最大边长

  2. 方程 Function

    • if matrix[i][j] == 1

      • f[i%2][j] = min(f[(i - 1)%2][j], f[i%2][j-1], f[(i-1)%2][j-1]) + 1;

    • if matrix[i][j] == 0

    • f[i%2][j] = 0

  3. 初始化 Intialization

    • f[i%2][0] = matrix[i][0];

    • f[0][j] = matrix[0][j];

  4. 答案 Answer

    • max{f[i%2][j]}

Solution

Standard Dynamic Programming

LeetCode version (char[][] as input) - (12ms 30.09%)

A smart way to bypass initialization, use m + 1, n + 1 as dp[][] dimension:

(notice matrix[i-1][j-1] is used for determining dp[i][j]) - O(mn) time, O(mn) space - (13 ms, faster than 23.53%)

Space optimized DP - O(mn) time, O(n) space

Reference

Last updated

Was this helpful?