Graph
, Depth-first Search
, Breadth-first Search
, Topological Sorting
Medium
There are a total of n courses you have to take, labeled from0
ton-1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair:[0,1]
Given the total number of courses and a list of prerequisite pairs , is it possible for you to finish all courses?
Example 1:
Copy Input:
2, [[1,0]]
Output:
true
Explanation:
There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Copy Input:
2, [[1,0],[0,1]]
Output:
false
Explanation:
There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges , not adjacency matrices. Read more about how a graph is represented .
You may assume that there are no duplicate edges in the input prerequisites.
Analysis
此题考虑课程依赖关系是否能满足,其实抽象来看,课程的依赖关系其实是有向图的边edge,那么问题的内核其实就是这个有向图是否有环,如果无环,则依赖关系可以成立,也就是DAG (有向无环图)。判定是否为DAG,则可以用拓扑排序Topological Sorting 。
https://www.youtube.com/watch?v=M6SBePBMznU
拓扑排序 = 顶点染色 + 记录顺序
这里只需要顶点染色即可。
DFS - 需要先遍历叶子节点,再遍历根节点,因此可以看成是post-order
Solution
Topological Sorting - HashMap - DFS - (9ms 83.11% AC)
Copy class Solution {
private HashMap < Integer , ArrayList < Integer >> graph;
public boolean canFinish ( int numCourses , int [][] prerequisites) {
graph = new HashMap < Integer , ArrayList < Integer >>();
// states: 0 = unknown, 1 = visiting, 2 = visited
int [] visit = new int [numCourses];
for ( int i = 0 ; i < numCourses; i ++ ) {
graph . put (i , new ArrayList < Integer >());
}
for ( int [] p : prerequisites) {
if ( graph . containsKey (p[ 0 ])) {
graph . get (p[ 0 ]) . add (p[ 1 ]);
}
}
for ( int i = 0 ; i < numCourses; i ++ ) {
if ( dfs(i , visit) ) return false ;
}
return true ;
}
private boolean dfs ( int cur , int [] v) {
if (v[cur] == 1 ) return true ;
if (v[cur] == 2 ) return false ;
v[cur] = 1 ;
for ( int i = 0 ; i < graph . get (cur) . size (); i ++ ) {
if ( dfs( graph . get(cur) . get(i) , v) ) return true ;
}
v[cur] = 2 ;
return false ;
}
}
*Topological Sort - DFS - Improved - ArrayList[] - (5ms 99.81% AC)
Copy class Solution {
private ArrayList [] graph;
public boolean canFinish ( int numCourses , int [][] prerequisites) {
graph = new ArrayList [numCourses];
// states: 0 = unknown, 1 = visiting, 2 = visited
int [] visit = new int [numCourses];
for ( int i = 0 ; i < numCourses; i ++ ) {
graph[i] = new ArrayList < Integer > ();
}
for ( int [] p : prerequisites) {
graph[p[ 0 ]] . add (p[ 1 ]);
}
for ( int i = 0 ; i < numCourses; i ++ ) {
if ( dfsCyclic(i , visit) ) return false ;
}
return true ;
}
private boolean dfsCyclic ( int cur , int [] v) {
if (v[cur] == 1 ) return true ;
if (v[cur] == 2 ) return false ;
v[cur] = 1 ;
for ( int i = 0 ; i < graph[cur] . size (); i ++ ) {
if ( dfsCyclic(( int ) graph[cur] . get(i) , v) ) return true ;
}
v[cur] = 2 ;
return false ;
}
}
Topological Sort - OO Style - DFS (8ms 87.81% AC)
Modified from https://leetcode.com/problems/course-schedule/discuss/58713/OO-easy-to-read-java-solution
Copy class Solution {
public boolean canFinish ( int numCourses , int [][] prerequisites) {
Course [] courses = new Course [numCourses];
for ( int i = 0 ; i < numCourses; i ++ ) {
courses[i] = new Course() ;
}
for ( int i = 0 ; i < prerequisites . length ; i ++ ) {
courses[prerequisites[i][ 0 ]] . add (courses[prerequisites[i][ 1 ]]);
}
for ( int i = 0 ; i < numCourses; i ++ ) {
if ( isCyclic(courses[i]) ) return false ;
}
return true ;
}
private boolean isCyclic ( Course cur) {
if ( cur . tested ) return false ;
if ( cur . visited ) return true ;
cur . visited = true ;
for ( Course c : cur . pre ) {
if ( isCyclic(c) ) {
return true ;
}
}
cur . tested = true ;
return false ;
}
class Course {
boolean visited = false ; // being visited
boolean tested = false ; // tested if cyclic
List < Course > pre = new ArrayList < Course > ();
public void add ( Course c) {
pre . add (c);
}
}
}
BFS
Copy public class Solution {
/**
* @param numCourses a total of n courses
* @param prerequisites a list of prerequisite pairs
* @return true if can finish all courses or false
*/
public boolean canFinish ( int numCourses , int [][] prerequisites) {
// Write your code here
List [] edges = new ArrayList [numCourses];
int [] degree = new int [numCourses];
for ( int i = 0 ;i < numCourses; i ++ )
edges[i] = new ArrayList < Integer >();
for ( int i = 0 ; i < prerequisites . length ; i ++ ) {
degree[prerequisites[i][ 0 ]] ++ ;
edges[prerequisites[i][ 1 ]] . add (prerequisites[i][ 0 ]);
}
Queue queue = new LinkedList() ;
for ( int i = 0 ; i < degree . length ; i ++ ){
if (degree[i] == 0 ) {
queue . add (i);
}
}
int count = 0 ;
while ( ! queue . isEmpty ()){
int course = ( int ) queue . poll ();
count ++ ;
int n = edges[course] . size ();
for ( int i = 0 ; i < n; i ++ ){
int pointer = ( int )edges[course] . get (i);
degree[pointer] -- ;
if (degree[pointer] == 0 ) {
queue . add (pointer);
}
}
}
return count == numCourses;
}
}
Reference
https://www.jiuzhang.com/solution/course-schedule
https://blog.csdn.net/ljiabin/article/details/45846837
https://www.youtube.com/watch?v=ddTC4Zovtbc