LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Backpack (0 - 1 背包问题)
  • 0-1 knapsack problem
  • 单次选择 + 最大体积
  • Question
  • Analysis
  • Solution
  • Reference

Was this helpful?

  1. Knapsack

Backpack

PreviousKnapsackNextBackpack II

Last updated 5 years ago

Was this helpful?

(0 - 1 背包问题)

0-1 knapsack problem

单次选择 + 最大体积

Question

Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack?

Notice

You can not divide any item into small pieces.

Example

If we have 4 items with size [2, 3, 5, 7], the backpack size is 11, we can select [2, 3, 5], so that the max size we can fill this backpack is 10. If the backpack size is 12. we can select [2, 3, 7] so that we can fulfill the backpack.

You function should return the max size we can fill in the given backpack.

Challenge

O(n x m) time and O(m) memory.

O(n x m) memory is also acceptable if you do not know how to optimize memory.

Tags

LintCode Copyright Dynamic Programming Backpack

Related Problems

Medium Backpack VI 30 % Medium Backpack V 38 % Medium Backpack IV 36 % Hard Backpack III 50 % Medium Backpack II 37 %

Analysis

背包问题序列I

要点: 单次选择+最大体积

常用是DP,但也可以用递归+记忆化搜索来做。

这个问题没有给每个物品的价值,也没有问最多能获得多少价值,而是问最多能装多满。

实际上在这里,如果我们把每个物品的大小当作每个物品的价值,就可以完美解决这个问题。

Solution

Preferred Solution

2D - DP

状态:

dp[i][j] - 代表在前 i 件物品中选择若干件,这若干件物品的体积和不超过 j 的情况下,所能获得的最大容量

外层循环A[i], 内层循环j

状态转移:

if (j >= A[i - 1]) {
    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - A[i - 1]] + A[i - 1]);
} else {
    dp[i][j] = dp[i - 1][j];
}

2D DP

    public int backPack(int m, int[] A) {
        int[][] dp = new int[A.length + 1][m + 1];
        for (int i = 1; i <= A.length; i++) {
            for (int j = 1; j <= m; j++) {
                if (j >= A[i - 1]) {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - A[i - 1]] + A[i - 1]);
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[A.length][m];
    }

Or Another 2D DP

   public int backPackI(int m, int[] A) {
        int dp[][] = new int[A.length + 1][m + 1];
        for(int i = 1; i < A.length + 1; i++){
            for(int j = 0; j < m + 1; j++){
                dp[i][j] = dp[i-1][j];
                if(j >= A[i - 1]){
                    dp[i][j] = Math.max(dp[i][j], dp[i-1][j - A[i-1]] + A[i-1]);
                }
            }
        }
        return dp[A.length][m];
    }

1D - DP

State: 数组dp[i]表示书包空间为i的时候能装的A物品最大容量

动规经典题目,用数组dp[i]表示书包空间为i的时候能装的A物品最大容量。

两次循环,外部遍历数组A,内部反向遍历数组dp,若j即背包容量大于等于物品体积A[i],则取前i - 1次循环求得的最大容量dp[j],和背包体积为j - A[i]时的最大容量dp[j - A[i]]与第i个物品体积A[i]之和即dp[j - A[i]] + A[i]的较大值,作为本次循环后的最大容量dp[i]。

注意dp[]的空间要给m+1,因为我们要求的是第m+1个值dp[m],否则会抛出OutOfBoundException。

一维数组优化:

在第 i 层循环初 dp[j] 存的相当于 dp[i - 1][j] 的值,因为在更新dp[j]时用到了 dp[j - A[i]], 由于内层循环倒序,所以dp[j - A[i]] 未被更新,因此代表了dp[i-1][j - A[i]]。

1D space optimized:

public class Solution {
    public int backPack(int m, int[] A) {
        int[] dp = new int[m+1];
        for (int i = 0; i < A.length; i++) {
            for (int j = m; j > 0; j--) {
                if (j >= A[i]) {
                    dp[j] = Math.max(dp[j], dp[j - A[i]] + A[i]);
                }
            }
        }
        return dp[m];
    }
}

1D DP

j = m, m-1, ..., A[i]

    public int backPack(int m, int[] A) {
        int[] dp = new int[m + 1];
        for (int i = 0; i < A.length; i++) {
            for (int j = m; j >= A[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - A[i]] + A[i]);
            }
        }
        return dp[m];
    }

Another DP Approach (NOT Preferred)

2D with O(n * m) time and O(n * m) space.

动态规划4要素

  • State:

    • f[i][S] “前i”个物品,取出一些能否组成和为S

  • Function:

    • f[i][S] = f[i-1][S - a[i]] or f[i-1][S]

  • Initialize:

    • f[i][0] = true; f[0][1..target] = false

  • Answer:

    • 检查所有的f[n][j]

O(n * S) , 滚动数组优化

注意这里A[i - 1]的数组下标,因为新建的是i = 1, ..., A.length

public class Solution {
    /**
    * @param m: An integer m denotes the size of a backpack
    * @param A: Given n items with size A[i]
    * @return: The maximum size
    */
    public int backPack(int m, int[] A) {
        boolean[][] dp = new boolean[A.length + 1][m + 1];

        dp[0][0] = true;

        for (int i = 1; i <= A.length; i++) {
            for (int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j] || (j - A[i - 1] >= 0 && dp[i - 1][j - A[i - 1]]);
            }
        }

        for (int j = m; j >= 0; j--) {
            if (dp[A.length][j]) {
                return j;
            }
        }

        return 0;
    }
}

1D version with O(n * m) time and O(m) memory.

public class Solution {
    /**
    * @param m: An integer m denotes the size of a backpack
    * @param A: Given n items with size A[i]
    * @return: The maximum size
    */
    public int backPack(int m, int[] A) {
        if (A.length == 0) return 0;

        int n = A.length;
        boolean[] dp = new boolean[m + 1];
        Arrays.fill(dp, false);
        dp[0] = true;

        for (int i = 1; i <= n; i++) {
            for (int j = m; j >= 0; j--) {
                if (j - A[i - 1] >= 0 && dp[j - A[i - 1]]) {
                    dp[j] = dp[j - A[i - 1]];
                }
            }
        }


        for (int i = m; i >= 0;i--) {
            if (dp[i]) return i;
        }


        return 0;
    }
}

Memoization + Search

    int max =  Integer.MAX_VALUE;
    public int backPack(int m, int[] A) {

        Arrays.sort(A);
        boolean[] visited = new boolean[m + 1];
        int[] memo = new int[m + 1];
        dfs( m , A , 0 ,visited , memo );
        return m - max ;

    }
    private int dfs( int target , int[] A , int startIndex , boolean[] visited , int[] memo){
        if(visited[target]){
            return memo[target];
        }
        int res = target;
        for(int i = startIndex ; i < A.length ; i++){
            if(target - A[i] >=  0){
                res = dfs( target - A[i] , A , i + 1 ,visited ,memo);
            }
            else{
                break;
            }
        }
        visited[target] = true;
        memo[target] = res;
        max = Math.min(max ,res);
        return res; 
    }

Reference

Backpack
https://www.jiuzhang.com/solution/backpack/#tag-other
Backpack - neverlandly - 博客园