LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Question
  • Analysis
  • Solution
  • Using Two Stacks*
  • Using One Stack - store difference between x and min
  • Using One Stack with Custom Element Class Object - Store min within each element
  • Reference

Was this helpful?

  1. Stack

Min Stack

PreviousLongest Valid ParenthesesNextMax Stack

Last updated 5 years ago

Was this helpful?

Question

LintCode

Implement a stack with min() function, which will return the smallest number in the stack.

It should support push, pop and min operation all in O(1) cost.

Notice

min operation will never be called if there is no number in the stack.

Example

push(1)
pop()   // return 1
push(2)
push(3)
min()   // return 2
push(1)
min()   // return 1

LeetCode

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

  • push(x) -- Push element x onto stack.

  • pop() -- Removes the element on top of the stack.

  • top() -- Get the top element.

  • getMin() -- Retrieve the minimum element in the stack.

Example:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> Returns -3.
minStack.pop();
minStack.top();      --> Returns 0.
minStack.getMin();   --> Returns -2.

Analysis

Using Two Stacks

利用两个栈结构,其中一个是主要的正常stack,满足pop(), push()的O(1)时间要求,另外一个作为辅助的minStack,仅存入min的integer。 min = Integer.parseInt(minStack.peek().toString());

push()时,如果number <= min,则push到minStack上 pop()时,如果number == min,也从minStack上pop

题中的例子,最终stack为[2, 3, 1], minStack为 [2, 1]

这样minStack中保留stack中最小元素相对顺序,在pop之后依然能够保证minStack的栈顶为当前最小元素。

Using LinkedList Node

自定义Node类,其中包含该节点对应的min,这样就可以实现O(1)的getMin()操作,其余push(), pop(),也因为LinkedList实现O(1)

Using Single Stack

这个想法较为奇特一些,就是在stack中存入当前入栈的值与最小值之差,x - min

优点是getMin() 操作只需返回min即可,但是push(), pop() 操作需要结合min以及栈顶元素

缺点是:

The problem for the solution is the cast. Since the possible gap between the current value and the min value could be Integer.MAX_VALUE-Integer.MIN_VALUE;

Solution

public class MinStack {
    private Stack<Integer> stack;
    private Stack<Integer> minStack;

    public MinStack() {
        stack = new Stack<Integer>();
        minStack = new Stack<Integer>();
    }

    public void push(int number) {
        stack.push(number);
        if (minStack.isEmpty()) {
            minStack.push(number);
        } else if (Integer.parseInt(minStack.peek().toString()) >= number) {
            minStack.push(number);
        }
    }

    public int pop() {
        if (stack.peek().equals(minStack.peek())) {
            minStack.pop();
        }
        return stack.pop();
    }

    public int min() {
        return minStack.peek();
    }
}

Using Two Stacks*

注意:这里有一个trick要注意,因为stack中存入的是Integer,因此 pop()时,检查是否minStack和stack中的元素是否相等时,需要做强制转化为(int) 变量,否则会出现错误(当元素范围在-128 ~ 127之外时):

The JVM is caching Integer values. == only works for numbers between -128 and 127

You can't compare twoIntegerwith a simple == they're objects so most of the time references won't be the same.

There is a trick, with Integer between -128 and 127, references will be the same as autoboxing usesInteger.valueOf()which caches small integers.

因此,可以先用int强制转化。

参考:

// "static void main" must be defined in a public class.
public class Main {
    public static void main(String[] args) {
        Stack<Integer> s = new Stack<>();
        Stack<Integer> t = new Stack<>();
        s.push(-1);
        t.push(-1);
        System.out.println(s.pop() == t.pop());

        s.push(-129);
        t.push(-129);
        System.out.println(s.pop() == t.pop());

        s.push(128);
        t.push(128);
        System.out.println(s.pop() == t.pop());
    }
}

// output:
// true
// false
// false

--

Time: O(1)

Space: O(n)

class MinStack {
    Stack<Integer> stack;
    Stack<Integer> minStack;

    /** initialize your data structure here. */
    public MinStack() {
        stack = new Stack<Integer>();
        minStack = new Stack<Integer>();
    }

    public void push(int x) {
        stack.push(x);
        if (minStack.isEmpty()) {
            minStack.push(x);
        }
        else if ((int) minStack.peek() >= x) {
            minStack.push(x);
        }
    }

    public void pop() {
        int x = stack.pop();
        if (!minStack.isEmpty() && x == minStack.peek()) {
             minStack.pop();   
        }
    }

    public int top() {
        return stack.peek();
    }

    public int getMin() {
        return minStack.peek();
    }
}

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(x);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */

Using One Stack - store difference between x and min

  • Time: O(1)

  • Space: O(1)

top() - 如果当前栈顶的对应元素是新的min值,那么 top() 对应 min, 否则对应 stack.peek() + min

push() - 每次存入

public class MinStack {
    long min;
    Stack<Long> stack;

    public MinStack() {
        min = Integer.MAX_VALUE; 
        stack  = new Stack<>(); 
    }

    public void push(int x) {
        stack.push((long)x - min);
        min = Math.min(x, min);
    }

    public void pop() {
        min = Math.max(min - stack.pop(), min);
    }

    public int top() {
        return (int)Math.max(stack.peek() + min, min);
    }

    public int getMin() {
        return (int)min;
    }
}

Using One Stack with Custom Element Class Object - Store min within each element

Time: O(1)

Space: O(n), extra space for the min value in the custom class object

class MinStack
{
    static class Element
    {
        final int value;
        final int min;
        Element(final int value, final int min)
        {
            this.value = value;
            this.min = min;
        }
    }
    final Stack<Element> stack = new Stack<>();

    public void push(int x) {
        final int min = (stack.empty()) ? x : Math.min(stack.peek().min, x);
        stack.push(new Element(x, min));
    }

    public void pop()
    {
        stack.pop();
    }

    public int top()
    {
        return stack.peek().value;
    }

    public int getMin()
    {
        return stack.peek().min;
    }
}

Using LinkedList Node*

class MinStack {
    private Node head;

    public void push(int x) {
        if(head == null) 
            head = new Node(x, x);
        else 
            head = new Node(x, Math.min(x, head.min), head);
    }

    public void pop() {
        head = head.next;
    }

    public int top() {
        return head.val;
    }

    public int getMin() {
        return head.min;
    }

    private class Node {
        int val;
        int min;
        Node next;

        private Node(int val, int min) {
            this(val, min, null);
        }

        private Node(int val, int min, Node next) {
            this.val = val;
            this.min = min;
            this.next = next;
        }
    }
}

Reference

https://leetcode.com/problems/min-stack/description/
https://stackoverflow.com/questions/3637936/java-integer-equals-vs
http://www.owasp.org/index.php/Java_gotchas#Immutable_Objects_.2F_Wrapper_Class_Caching
https://www.geeksforgeeks.org/design-a-stack-that-supports-getmin-in-o1-time-and-o1-extra-space/