Given a 32-bit signed integer, reverse digits of an integer.
Example 1:
Input:
123
Output:
321
Example 2:
Input:
-123
Output:
-321
Example 3:
Input:
120
Output:
21
Note:
Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−2^31, 2^31 − 1]. For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows.
Solution & Analysis
LeetCode - Approach Pop and Push Digits & Check before Overflow
We can build up the reverse integer one digit at a time.
Reversing an integer can be done similarly to reversing a string. We want to repeatedly "pop" the last digit off of x and "push" it to the back of the rev. In the end, rev will be the reverse of the x.
To "pop" and "push" digits without the help of some auxiliary stack/array, we can use math.
However, this approach is dangerous, because the statement temp = rev⋅10 + pop can cause overflow.
Luckily, it is easy to check beforehand whether or this statement would cause an overflow.
If temp = rev⋅10 + pop causes overflow, then it must be that rev >= Integer.MAX_VALUE / 10;
If rev > Integer.MAX_VALUE / 10, then temp = rev * 10 + pop is guaranteed to overflow
If rev == Integer.MAX_VALUE / 10, then temp = rev * 10 + pop will overflow if and only if pop > 7
Similar logic can be applied when rev is negative.
Complexity Analysis
Time Complexity: O(log(x)). There are roughly log 10 (x) digits in x.
//pop operation:
pop = x % 10;
x /= 10;
//push operation:
temp = rev * 10 + pop;
rev = temp;
class Solution {
public int reverse(int x) {
int rev = 0;
while (x != 0) {
int pop = x % 10;
x /= 10;
if (rev > Integer.MAX_VALUE/10 || (rev == Integer.MAX_VALUE / 10 && pop > 7)) return 0;
if (rev < Integer.MIN_VALUE/10 || (rev == Integer.MIN_VALUE / 10 && pop < -8)) return 0;
rev = rev * 10 + pop;
}
return rev;
}
}
class Solution {
public int reverse(int x) {
long res = 0;
while (x != 0) {
res *= 10;
res += x % 10;
x /= 10;
}
return (int) res == res ? (int) res : 0;
}
}
public int reverse(int x)
{
int result = 0;
while (x != 0)
{
int tail = x % 10;
int newResult = result * 10 + tail;
if ((newResult - tail) / 10 != result) { return 0; }
result = newResult;
x = x / 10;
}
return result;
}