LintCode & LeetCode
  • Introduction
  • Linked List
    • Sort List
    • Merge Two Sorted Lists
    • Merge k Sorted Lists
    • Linked List Cycle
    • Linked List Cycle II
    • Add Two Numbers II
    • Add Two Numbers
    • Odd Even Linked List
    • Intersection of Two Linked Lists
    • Reverse Linked List
    • Reverse Linked List II
    • Remove Linked List Elements
    • Remove Nth Node From End of List
    • Middle of the Linked List
    • Design Linked List
      • Design Singly Linked List
      • Design Doubly Linked List
    • Palindrome Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Implement Stack Using Singly Linked List
    • Copy List with Random Pointer
  • Binary Search
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Search in a Sorted Array of Unknown Size
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Find Peak Element
    • Search for a Range
    • Find K Closest Elements
    • Search Insert Position
    • Peak Index in a Mountain Array
    • Heaters
  • Hash Table
    • Jewels and Stones
    • Single Number
    • Subdomain Visit Count
    • Design HashMap
    • Design HashSet
    • Logger Rate Limiter
    • Isomorphic Strings
    • Minimum Index Sum of Two Lists
    • Contains Duplicate II
    • Contains Duplicate III
    • Longest Consecutive Sequence
    • Valid Sudoku
    • Distribute Candies
    • Shortest Word Distance
    • Shortest Word Distance II
  • String
    • Rotate String
    • Add Binary
    • Implement strStr()
    • Longest Common Prefix
    • Reverse Words in a String
    • Reverse Words in a String II
    • Reverse Words in a String III
    • Valid Word Abbreviation
    • Group Anagrams
    • Unique Email Addresses
    • Next Closest Time
    • License Key Formatting
    • String to Integer - atoi
    • Ransom Note
    • Multiply Strings
    • Text Justification
    • Reorder Log Files
    • Most Common Word
    • Valid Parenthesis String
    • K-Substring with K different characters
    • Find All Anagrams in a String
    • Find the Closest Palindrome
    • Simplify Path
  • Array
    • Partition Array
    • Median of Two Sorted Arrays
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Maximum Subarray Sum
    • Minimum Subarray Sum
    • Maximum Subarray II
    • Maximum Subarray III
    • Subarray Sum Closest
    • Subarray Sum
    • Plus One
    • Maximum Subarray Difference
    • Maximum Subarray IV
    • Subarray Sum Equals K
    • Intersection of Two Arrays
    • Intersection of Two Arrays II
    • Find Pivot Index
    • Rotate Array
    • Get Smallest Nonnegative Integer Not In The Array
    • Maximize Distance to Closest Person
    • Sort Colors
    • Next Permutation
    • Rotate Image
    • Pour Water
    • Prison Cells After N Days
    • Majority Element
    • Can Place Flowers
    • Candy
  • Matrix
    • Spiral Matrix
    • Set Matrix Zeroes
    • Diagonal Traverse
  • Queue
    • Design Circular Queue
    • Implement Queue using Stacks
    • Implement Queue by Two Stacks
    • Implement Stack using Queues
    • Moving Average from Data Stream
    • Walls and Gates
    • Open the Lock
    • Sliding Window Maximum
    • Implement Queue Using Fixed Length Array
    • Animal Shelter
  • Stack
    • Valid Parentheses
    • Longest Valid Parentheses
    • Min Stack
    • Max Stack
    • Daily Temperatures
    • Evaluate Reverse Polish Notation
    • Next Greater Element I
    • Next Greater Element II
    • Next Greater Element III
    • Largest Rectangle in Histogram
    • Maximal Rectangle
    • Car Fleet
  • Heap
    • Trapping Rain Water II
    • The Skyline Problem
    • Top K Frequent Words
    • Top K Frequent Words II
    • Top K Frequent Elements
    • Top k Largest Numbers
    • Top k Largest Numbers II
    • Minimum Cost to Hire K Workers
    • Kth Largest Element in an Array
    • Kth Smallest Number in Sorted Matrix
    • Kth Smallest Sum In Two Sorted Arrays
    • K Closest Points to the Origin
    • Merge K Sorted Lists
    • Merge K Sorted Arrays
    • Top K Frequent Words - Map Reduce
  • Data Structure & Design
    • Hash Function
    • Heapify
    • LRU Cache
    • LFU Cache
    • Rehashing
    • Stack Sorting
    • Animal Shelter
    • Sliding Window Maximum
    • Moving Average from Data Stream
    • Find Median from Data Stream
    • Sliding Window Median
    • Design Hit Counter
    • Read N Characters Given Read4 II - Call multiple times
    • Read N Characters Given Read4
    • Flatten 2D Vector
    • Flatten Nested List Iterator
    • Design Search Autocomplete System
    • Time Based Key-Value Store
    • Design Tic-Tac-Toe
    • Insert Delete GetRandom O(1)
  • Union Find
    • Find the Connected Component in the Undirected Graph
    • Find the Weak Connected Component in the Directed Graph
    • Graph Valid Tree
    • Number of Islands
    • Number of Islands II
    • Surrounded Regions
    • Most Stones Removed with Same Row or Column
    • Redundant Connection
  • Trie
    • Implement Trie
    • Add and Search Word
    • Word Search II
    • Longest Word in Dictionary
    • Palindrome Pairs
    • Trie Serialization
    • Trie Service
    • Design Search Autocomplete System
    • Typeahead
  • Trees
    • Binary Tree Inorder Traversal
    • Binary Tree Postorder Traversal
    • Binary Tree Preorder Traversal
    • Binary Tree Level Order Traversal
    • Binary Tree Zigzag Level Order Traversal
    • Binary Tree Vertical Order Traversal
    • N-ary Tree Level Order Traversal
    • N-ary Tree Preorder Traversal
    • N-ary Tree Postorder Traversal
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Populating Next Right Pointers in Each Node
    • Populating Next Right Pointers in Each Node II
    • Maximum Depth of Binary Tree
    • Symmetric Tree
    • Validate Binary Search Tree
    • Convert Sorted Array to Binary Search Tree
    • Path Sum
    • Path Sum II
    • Path Sum III
    • Binary Tree Maximum Path Sum
    • Kth Smallest Element in a BST
    • Same Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Nested List Weight Sum II
    • BST Node Distance
    • Minimum Distance (Difference) Between BST Nodes
    • Closet Common Manager
    • N-ary Tree Postorder Traversal
    • Serialize and Deserialize Binary Tree
    • Serialize and Deserialize N-ary Tree
    • Diameter of a Binary Tree
    • Print Binary Trees
  • Segment Tree
    • Segment Tree Build
    • Range Sum Query - Mutable
  • Binary Indexed Tree
  • Graph & Search
    • Clone Graph
    • N Queens
    • Six Degrees
    • Number of Islands
    • Number of Distinct Islands
    • Word Search
    • Course Schedule
    • Course Schedule II
    • Word Ladder
    • Redundant Connection
    • Redundant Connection II
    • Longest Increasing Path in a Matrix
    • Reconstruct Itinerary
    • The Maze
    • The Maze II
    • The Maze III
    • Topological Sorting
    • Island Perimeter
    • Flood Fill
    • Cheapest Flights Within K Stops
    • Evaluate Division
    • Alien Dictionary
    • Cut Off Trees for Golf Event
    • Jump Game II
    • Most Stones Removed with Same Row or Column
  • Backtracking
    • Subsets
    • Subsets II
    • Letter Combinations of a Phone Number
    • Permutations
    • Permutations II
    • Combinations
    • Combination Sum
    • Combination Sum II
    • Combination Sum III
    • Combination Sum IV
    • N-Queens
    • N-Queens II
    • Generate Parentheses
    • Subsets of Size K
  • Two Pointers
    • Two Sum II
    • Triangle Count
    • Trapping Rain Water
    • Container with Most Water
    • Minimum Size Subarray Sum
    • Minimum Window Substring
    • Longest Substring Without Repeating Characters
    • Longest Substring with At Most K Distinct Characters
    • Longest Substring with At Most Two Distinct Characters
    • Fruit Into Baskets
    • Nuts & Bolts Problem
    • Valid Palindrome
    • The Smallest Difference
    • Reverse String
    • Remove Element
    • Max Consecutive Ones
    • Max Consecutive Ones II
    • Remove Duplicates from Sorted Array
    • Remove Duplicates from Sorted Array II
    • Move Zeroes
    • Longest Repeating Character Replacement
    • 3Sum With Multiplicity
    • Merge Sorted Array
    • 3Sum Smaller
    • Backspace String Compare
  • Mathematics
    • Ugly Number
    • Ugly Number II
    • Super Ugly Number
    • Sqrt(x)
    • Random Number 1 to 7 With Equal Probability
    • Pow(x, n)
    • Narcissistic Number
    • Rectangle Overlap
    • Happy Number
    • Add N Days to Given Date
    • Reverse Integer
    • Greatest Common Divisor or Highest Common Factor
  • Bit Operation
    • IP to CIDR
  • Random
    • Random Pick with Weight
    • Random Pick Index
    • Linked List Random Node
  • Dynamic Programming
    • House Robber
    • House Robber II
    • House Robber III
    • Longest Increasing Continuous Subsequence
    • Longest Increasing Continuous Subsequence II
    • Coins in a Line
    • Coins in a Line II
    • Coins in a Line III
    • Maximum Product Subarray
    • Longest Palindromic Substring
    • Stone Game
    • Burst Balloons
    • Perfect Squares
    • Triangle
    • Pascal's Triangle
    • Pascal's Triangle II
    • Min Cost Climbing Stairs
    • Climbing Stairs
    • Unique Paths
    • Unique Paths II
    • Minimum Path Sum
    • Word Break
    • Word Break II
    • Range Sum Query - Immutable
    • Decode Ways
    • Edit Distance
    • Unique Binary Search Trees
    • Unique Binary Search Trees II
    • Maximal Rectangle
    • Maximal Square
    • Regular Expression Matching
    • Wildcard Matching
    • Flip Game II
    • Longest Increasing Subsequence
    • Target Sum
    • Partition Equal Subset Sum
    • Coin Change
    • Jump Game
    • Can I Win
    • Maximum Sum Rectangle in a 2D Matrix
    • Cherry Pick
  • Knapsack
    • Backpack
    • Backpack II
    • Backpack III
    • Backpack IV
    • Backpack V
    • Backpack VI
    • Backpack VII
    • Coin Change
    • Coin Change II
  • High Frequency
    • 2 Sum Closest
    • 3 Sum
    • 3 Sum Closest
    • Sort Colors II
    • Majority Number
    • Majority Number II
    • Majority Number III
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Best Time to Buy and Sell Stock IV
    • Two Sum
    • Two Sum II - Input array is sorted
    • Two Sum III - Data structure design
    • Two Sum IV - Input is a BST
    • 4 Sum
    • 4 Sum II
  • Sorting
  • Greedy
    • Jump Game II
    • Remove K Digits
  • Minimax
    • Nim Game
    • Can I Win
  • Sweep Line & Interval
    • Meeting Rooms
    • Meeting Rooms II
    • Merge Intervals
    • Insert Interval
    • Number of Airplanes in the Sky
    • Exam Room
    • Employee Free Time
    • Closest Pair of Points
    • My Calendar I
    • My Calendar II
    • My Calendar III
    • Add Bold Tag in String
  • Other Algorithms and Data Structure
    • Huffman Coding
    • Reservoir Sampling
    • Bloom Filter
    • External Sorting
    • Construct Quad Tree
  • Company Tag
    • Google
      • Guess the Word
      • Raindrop on Sidewalk
    • Airbnb
      • Display Pages (Pagination)
    • Amazon
  • Problem Solving Summary
    • String or Array Rotation
    • Tips for Avoiding Bugs
    • Substring or Subarray Search
    • Sliding Window
    • K Sums
    • Combination Sum Series
    • Knapsack Problems
    • Depth-first Search
    • Large Number Operation
    • Implementation - Simulation
    • Monotonic Stack & Queue
    • Top K Problems
    • Java Interview Tips
      • OOP in Java
      • Conversion in Java
      • Data Structures in Java
    • Algorithm Optimization Tips
  • Reference
Powered by GitBook
On this page
  • Solution & Analysis
  • Depth-first Search
  • Breadth-first Search - Queue
  • Reference

Was this helpful?

  1. Trees

Serialize and Deserialize Binary Tree

PreviousN-ary Tree Postorder TraversalNextSerialize and Deserialize N-ary Tree

Last updated 5 years ago

Was this helpful?

Tree, Design

Hard

Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.

Design an algorithm to serialize and deserialize a binary tree. There is no restriction on how your serialization/deserialization algorithm should work. You just need to ensure that a binary tree can be serialized to a string and this string can be deserialized to the original tree structure.

Example:

You may serialize the following tree:

    1
   / \
  2   3
     / \
    4   5

as 
"[1,2,3,null,null,4,5]"

Clarification:The above format is the same as. You do not necessarily need to follow this format, so please be creative and come up with different approaches yourself.

Note: Do not use class member/global/static variables to store states. Your serialize and deserialize algorithms should be stateless.

Solution & Analysis

Depth-first Search

Pre-Oder Traversal:

The preorder DFS traverse follows recursively the order of root -> left subtree -> right subtree.

[1,2,3,null,null,4,5]

---serialize--->

1,2,#,#,3,4,#,#,5,#,#,

用一个辅助的queue,存入data.split(",")之后的元素,这样在构建树时,就可以按照相同的顺序:root -> left subtree -> right subtree

Complexity Analysis

  • Time complexity : in both serialization and deserialization functions, we visit each node exactly once, thus the time complexity is O(N), whereNNis the number of nodes, _i.e._the size of tree.

  • Space complexity : in both serialization and deserialization functions, we keep the entire tree, either at the beginning or at the end, therefore, the space complexity is O(N).

10 ms, faster than 92.02%

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Codec {

    // Encodes a tree to a single string.
    public String serialize(TreeNode root) {
        if (root == null) {
            return "";
        }
        StringBuilder sb = new StringBuilder();

        traverse(root, sb);
        // System.out.println(sb.toString());

        return sb.toString();
    }

    private void traverse(TreeNode root, StringBuilder sb) {
        if (root != null) {
            sb.append(String.valueOf(root.val));
            sb.append(",");
            traverse(root.left, sb);
            traverse(root.right, sb);
        } else {
            sb.append("#");
            sb.append(",");
        }
    }

    // Decodes your encoded data to tree.
    public TreeNode deserialize(String data) {
        if (data == null || data.isEmpty()) {
            return null;
        }
        String[] values = data.split(",");

        Queue<String> queue = new LinkedList<String>(Arrays.asList(values));

        return buildTree(queue);
    }

    private TreeNode buildTree(Queue<String> queue) {
        if (queue == null || queue.isEmpty()) {
            return null;
        }
        String value = queue.poll();
        if (value.equals("#")) {
            return null;
        }

        TreeNode node = new TreeNode(Integer.parseInt(value));
        node.left = buildTree(queue);
        node.right = buildTree(queue);
        return node;
    }
}

// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));

Concise Solution (serial part NOT RECOMMENDED)

1,2,#,#,3,4,#,#,5,#,#

优点在保持了末尾不会有多余",", 但是逻辑上比较缠绕,一会pass by reference,一会返回值。因此尽管代码比较简洁,不推荐在面试中使用。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Codec {

    public String serialize(TreeNode root) {
        return serial(new StringBuilder(), root).toString();
    }

    // Generate preorder string
    private StringBuilder serial(StringBuilder str, TreeNode root) {
        if (root == null) return str.append("#");
        str.append(root.val).append(",");
        serial(str, root.left).append(",");
        serial(str, root.right);
        return str;
    }

    public TreeNode deserialize(String data) {
        return deserial(new LinkedList<>(Arrays.asList(data.split(","))));
    }

    // Use queue to simplify position move
    private TreeNode deserial(Queue<String> q) {
        String val = q.poll();
        if ("#".equals(val)) return null;
        TreeNode root = new TreeNode(Integer.valueOf(val));
        root.left = deserial(q);
        root.right = deserial(q);
        return root;
    }
}

Breadth-first Search - Queue

Serialize时类似 pre-order traversal. 这里为了节省空间,删去了末尾的"#",虽然deserialized的时候并无影响。

Deserialize的时候要从左边节点开始填充,也就是说只有i % 2 == 1时才从queue中poll(),如果不为null,再生成新节点放入queue中。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Codec {

    // Encodes a tree to a single string.
    public String serialize(TreeNode root) {
        if (root == null) {
            return "";
        }
        StringBuilder sb = new StringBuilder();
        // sb.append('[');

        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);

        while (!queue.isEmpty()) {
            TreeNode node = queue.poll();
            if (node == null) {
                sb.append('#');
            } else {
                sb.append(node.val);
                queue.offer(node.left);
                queue.offer(node.right);
            }
            sb.append(',');
        }

        // (optional, won't affect deserialization) remove tailing sharp and comma
        for (int i = sb.length() - 1; i >= 0; i--) {
            if (sb.charAt(i) == '#' || sb.charAt(i) == ',') {
                sb.deleteCharAt(i);
            } else {
                break;
            }
        }

        // sb.append(']');
        return sb.toString();
    }

    // Decodes your encoded data to tree.
    public TreeNode deserialize(String data) {
        if (data == null || data.isEmpty()) {
            return null;
        }
        String[] values = data.split(",");
        TreeNode root = new TreeNode(Integer.parseInt(values[0]));
        Queue<TreeNode> q = new LinkedList<TreeNode>();
        q.offer(root);

        int i = 1;
        boolean isLeft = true;
        TreeNode node = null;
        while (i < values.length) {
            if (isLeft) {
                node = q.poll();
                if (values[i].equals("#")) {
                    node.left = null;
                } else {
                    node.left = new TreeNode(Integer.parseInt(values[i]));
                    q.offer(node.left);
                }
            } else {
                if (values[i].equals("#")) {
                    node.right = null;
                } else {
                    node.right = new TreeNode(Integer.parseInt(values[i]));
                    q.offer(node.right);
                }
            }
            isLeft = !isLeft;
            i++;
        }
        return root;
    }
}

// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));

Reference

via -- 以下:代码比较简洁,但是serial的部分不是很readable的地方在于,何时加delimiter ","

how LeetCode serializes a binary tree
@cdai
https://leetcode.com/problems/serialize-and-deserialize-binary-tree/solution/
https://leetcode.com/problems/serialize-and-deserialize-binary-tree/discuss/74253/Easy-to-understand-Java-Solution
https://www.jiuzhang.com/solutions/binary-tree-serialization/#tag-other
https://leetcode.com/problems/serialize-and-deserialize-binary-tree/discuss/74260/Recursive-DFS-Iterative-DFS-and-BFS